Solve for t
t=1.25
t=3.75
Share
Copied to clipboard
10t-2t^{2}=9.375
Use the distributive property to multiply 10-2t by t.
10t-2t^{2}-9.375=0
Subtract 9.375 from both sides.
-2t^{2}+10t-9.375=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-10±\sqrt{10^{2}-4\left(-2\right)\left(-9.375\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 10 for b, and -9.375 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-10±\sqrt{100-4\left(-2\right)\left(-9.375\right)}}{2\left(-2\right)}
Square 10.
t=\frac{-10±\sqrt{100+8\left(-9.375\right)}}{2\left(-2\right)}
Multiply -4 times -2.
t=\frac{-10±\sqrt{100-75}}{2\left(-2\right)}
Multiply 8 times -9.375.
t=\frac{-10±\sqrt{25}}{2\left(-2\right)}
Add 100 to -75.
t=\frac{-10±5}{2\left(-2\right)}
Take the square root of 25.
t=\frac{-10±5}{-4}
Multiply 2 times -2.
t=-\frac{5}{-4}
Now solve the equation t=\frac{-10±5}{-4} when ± is plus. Add -10 to 5.
t=\frac{5}{4}
Divide -5 by -4.
t=-\frac{15}{-4}
Now solve the equation t=\frac{-10±5}{-4} when ± is minus. Subtract 5 from -10.
t=\frac{15}{4}
Divide -15 by -4.
t=\frac{5}{4} t=\frac{15}{4}
The equation is now solved.
10t-2t^{2}=9.375
Use the distributive property to multiply 10-2t by t.
-2t^{2}+10t=9.375
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2t^{2}+10t}{-2}=\frac{9.375}{-2}
Divide both sides by -2.
t^{2}+\frac{10}{-2}t=\frac{9.375}{-2}
Dividing by -2 undoes the multiplication by -2.
t^{2}-5t=\frac{9.375}{-2}
Divide 10 by -2.
t^{2}-5t=-4.6875
Divide 9.375 by -2.
t^{2}-5t+\left(-\frac{5}{2}\right)^{2}=-4.6875+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-5t+\frac{25}{4}=-4.6875+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
t^{2}-5t+\frac{25}{4}=\frac{25}{16}
Add -4.6875 to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{5}{2}\right)^{2}=\frac{25}{16}
Factor t^{2}-5t+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{16}}
Take the square root of both sides of the equation.
t-\frac{5}{2}=\frac{5}{4} t-\frac{5}{2}=-\frac{5}{4}
Simplify.
t=\frac{15}{4} t=\frac{5}{4}
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}