Solve for k
k=\frac{3x^{2}}{2}+x+1
Solve for x (complex solution)
x=\frac{\sqrt{6k-5}-1}{3}
x=\frac{-\sqrt{6k-5}-1}{3}
Solve for x
x=\frac{\sqrt{6k-5}-1}{3}
x=\frac{-\sqrt{6k-5}-1}{3}\text{, }k\geq \frac{5}{6}
Graph
Share
Copied to clipboard
\left(1-\left(-\frac{1}{2}\right)\right)x^{2}+x+1-k=0
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
\left(1+\frac{1}{2}\right)x^{2}+x+1-k=0
The opposite of -\frac{1}{2} is \frac{1}{2}.
\frac{3}{2}x^{2}+x+1-k=0
Add 1 and \frac{1}{2} to get \frac{3}{2}.
x+1-k=-\frac{3}{2}x^{2}
Subtract \frac{3}{2}x^{2} from both sides. Anything subtracted from zero gives its negation.
1-k=-\frac{3}{2}x^{2}-x
Subtract x from both sides.
-k=-\frac{3}{2}x^{2}-x-1
Subtract 1 from both sides.
-k=-\frac{3x^{2}}{2}-x-1
The equation is in standard form.
\frac{-k}{-1}=\frac{-\frac{3x^{2}}{2}-x-1}{-1}
Divide both sides by -1.
k=\frac{-\frac{3x^{2}}{2}-x-1}{-1}
Dividing by -1 undoes the multiplication by -1.
k=\frac{3x^{2}}{2}+x+1
Divide -\frac{3x^{2}}{2}-x-1 by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}