Solve for x (complex solution)
x=\frac{\sqrt{122}i}{2}+1\approx 1+5.522680509i
x=-\frac{\sqrt{122}i}{2}+1\approx 1-5.522680509i
Graph
Share
Copied to clipboard
1000+300x-100x^{2}+\left(1+x\right)\left(800-300x\right)=14400
Use the distributive property to multiply 1+\frac{1}{2}x by 1000-200x and combine like terms.
1000+300x-100x^{2}+800+500x-300x^{2}=14400
Use the distributive property to multiply 1+x by 800-300x and combine like terms.
1800+300x-100x^{2}+500x-300x^{2}=14400
Add 1000 and 800 to get 1800.
1800+800x-100x^{2}-300x^{2}=14400
Combine 300x and 500x to get 800x.
1800+800x-400x^{2}=14400
Combine -100x^{2} and -300x^{2} to get -400x^{2}.
1800+800x-400x^{2}-14400=0
Subtract 14400 from both sides.
-12600+800x-400x^{2}=0
Subtract 14400 from 1800 to get -12600.
-400x^{2}+800x-12600=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-800±\sqrt{800^{2}-4\left(-400\right)\left(-12600\right)}}{2\left(-400\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -400 for a, 800 for b, and -12600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-800±\sqrt{640000-4\left(-400\right)\left(-12600\right)}}{2\left(-400\right)}
Square 800.
x=\frac{-800±\sqrt{640000+1600\left(-12600\right)}}{2\left(-400\right)}
Multiply -4 times -400.
x=\frac{-800±\sqrt{640000-20160000}}{2\left(-400\right)}
Multiply 1600 times -12600.
x=\frac{-800±\sqrt{-19520000}}{2\left(-400\right)}
Add 640000 to -20160000.
x=\frac{-800±400\sqrt{122}i}{2\left(-400\right)}
Take the square root of -19520000.
x=\frac{-800±400\sqrt{122}i}{-800}
Multiply 2 times -400.
x=\frac{-800+400\sqrt{122}i}{-800}
Now solve the equation x=\frac{-800±400\sqrt{122}i}{-800} when ± is plus. Add -800 to 400i\sqrt{122}.
x=-\frac{\sqrt{122}i}{2}+1
Divide -800+400i\sqrt{122} by -800.
x=\frac{-400\sqrt{122}i-800}{-800}
Now solve the equation x=\frac{-800±400\sqrt{122}i}{-800} when ± is minus. Subtract 400i\sqrt{122} from -800.
x=\frac{\sqrt{122}i}{2}+1
Divide -800-400i\sqrt{122} by -800.
x=-\frac{\sqrt{122}i}{2}+1 x=\frac{\sqrt{122}i}{2}+1
The equation is now solved.
1000+300x-100x^{2}+\left(1+x\right)\left(800-300x\right)=14400
Use the distributive property to multiply 1+\frac{1}{2}x by 1000-200x and combine like terms.
1000+300x-100x^{2}+800+500x-300x^{2}=14400
Use the distributive property to multiply 1+x by 800-300x and combine like terms.
1800+300x-100x^{2}+500x-300x^{2}=14400
Add 1000 and 800 to get 1800.
1800+800x-100x^{2}-300x^{2}=14400
Combine 300x and 500x to get 800x.
1800+800x-400x^{2}=14400
Combine -100x^{2} and -300x^{2} to get -400x^{2}.
800x-400x^{2}=14400-1800
Subtract 1800 from both sides.
800x-400x^{2}=12600
Subtract 1800 from 14400 to get 12600.
-400x^{2}+800x=12600
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-400x^{2}+800x}{-400}=\frac{12600}{-400}
Divide both sides by -400.
x^{2}+\frac{800}{-400}x=\frac{12600}{-400}
Dividing by -400 undoes the multiplication by -400.
x^{2}-2x=\frac{12600}{-400}
Divide 800 by -400.
x^{2}-2x=-\frac{63}{2}
Reduce the fraction \frac{12600}{-400} to lowest terms by extracting and canceling out 200.
x^{2}-2x+1=-\frac{63}{2}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=-\frac{61}{2}
Add -\frac{63}{2} to 1.
\left(x-1\right)^{2}=-\frac{61}{2}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-\frac{61}{2}}
Take the square root of both sides of the equation.
x-1=\frac{\sqrt{122}i}{2} x-1=-\frac{\sqrt{122}i}{2}
Simplify.
x=\frac{\sqrt{122}i}{2}+1 x=-\frac{\sqrt{122}i}{2}+1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}