Evaluate
\frac{11}{10}+\frac{7}{10}i=1.1+0.7i
Real Part
\frac{11}{10} = 1\frac{1}{10} = 1.1
Share
Copied to clipboard
\frac{\left(-2+8i\right)\left(2-6i\right)}{\left(2+6i\right)\left(2-6i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2-6i.
\frac{\left(-2+8i\right)\left(2-6i\right)}{2^{2}-6^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-2+8i\right)\left(2-6i\right)}{40}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-2\times 2-2\times \left(-6i\right)+8i\times 2+8\left(-6\right)i^{2}}{40}
Multiply complex numbers -2+8i and 2-6i like you multiply binomials.
\frac{-2\times 2-2\times \left(-6i\right)+8i\times 2+8\left(-6\right)\left(-1\right)}{40}
By definition, i^{2} is -1.
\frac{-4+12i+16i+48}{40}
Do the multiplications in -2\times 2-2\times \left(-6i\right)+8i\times 2+8\left(-6\right)\left(-1\right).
\frac{-4+48+\left(12+16\right)i}{40}
Combine the real and imaginary parts in -4+12i+16i+48.
\frac{44+28i}{40}
Do the additions in -4+48+\left(12+16\right)i.
\frac{11}{10}+\frac{7}{10}i
Divide 44+28i by 40 to get \frac{11}{10}+\frac{7}{10}i.
Re(\frac{\left(-2+8i\right)\left(2-6i\right)}{\left(2+6i\right)\left(2-6i\right)})
Multiply both numerator and denominator of \frac{-2+8i}{2+6i} by the complex conjugate of the denominator, 2-6i.
Re(\frac{\left(-2+8i\right)\left(2-6i\right)}{2^{2}-6^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-2+8i\right)\left(2-6i\right)}{40})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-2\times 2-2\times \left(-6i\right)+8i\times 2+8\left(-6\right)i^{2}}{40})
Multiply complex numbers -2+8i and 2-6i like you multiply binomials.
Re(\frac{-2\times 2-2\times \left(-6i\right)+8i\times 2+8\left(-6\right)\left(-1\right)}{40})
By definition, i^{2} is -1.
Re(\frac{-4+12i+16i+48}{40})
Do the multiplications in -2\times 2-2\times \left(-6i\right)+8i\times 2+8\left(-6\right)\left(-1\right).
Re(\frac{-4+48+\left(12+16\right)i}{40})
Combine the real and imaginary parts in -4+12i+16i+48.
Re(\frac{44+28i}{40})
Do the additions in -4+48+\left(12+16\right)i.
Re(\frac{11}{10}+\frac{7}{10}i)
Divide 44+28i by 40 to get \frac{11}{10}+\frac{7}{10}i.
\frac{11}{10}
The real part of \frac{11}{10}+\frac{7}{10}i is \frac{11}{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}