Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-2+8i\right)\left(-2-6i\right)}{\left(-2+6i\right)\left(-2-6i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -2-6i.
\frac{\left(-2+8i\right)\left(-2-6i\right)}{\left(-2\right)^{2}-6^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-2+8i\right)\left(-2-6i\right)}{40}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-2\left(-2\right)-2\times \left(-6i\right)+8i\left(-2\right)+8\left(-6\right)i^{2}}{40}
Multiply complex numbers -2+8i and -2-6i like you multiply binomials.
\frac{-2\left(-2\right)-2\times \left(-6i\right)+8i\left(-2\right)+8\left(-6\right)\left(-1\right)}{40}
By definition, i^{2} is -1.
\frac{4+12i-16i+48}{40}
Do the multiplications in -2\left(-2\right)-2\times \left(-6i\right)+8i\left(-2\right)+8\left(-6\right)\left(-1\right).
\frac{4+48+\left(12-16\right)i}{40}
Combine the real and imaginary parts in 4+12i-16i+48.
\frac{52-4i}{40}
Do the additions in 4+48+\left(12-16\right)i.
\frac{13}{10}-\frac{1}{10}i
Divide 52-4i by 40 to get \frac{13}{10}-\frac{1}{10}i.
Re(\frac{\left(-2+8i\right)\left(-2-6i\right)}{\left(-2+6i\right)\left(-2-6i\right)})
Multiply both numerator and denominator of \frac{-2+8i}{-2+6i} by the complex conjugate of the denominator, -2-6i.
Re(\frac{\left(-2+8i\right)\left(-2-6i\right)}{\left(-2\right)^{2}-6^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-2+8i\right)\left(-2-6i\right)}{40})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-2\left(-2\right)-2\times \left(-6i\right)+8i\left(-2\right)+8\left(-6\right)i^{2}}{40})
Multiply complex numbers -2+8i and -2-6i like you multiply binomials.
Re(\frac{-2\left(-2\right)-2\times \left(-6i\right)+8i\left(-2\right)+8\left(-6\right)\left(-1\right)}{40})
By definition, i^{2} is -1.
Re(\frac{4+12i-16i+48}{40})
Do the multiplications in -2\left(-2\right)-2\times \left(-6i\right)+8i\left(-2\right)+8\left(-6\right)\left(-1\right).
Re(\frac{4+48+\left(12-16\right)i}{40})
Combine the real and imaginary parts in 4+12i-16i+48.
Re(\frac{52-4i}{40})
Do the additions in 4+48+\left(12-16\right)i.
Re(\frac{13}{10}-\frac{1}{10}i)
Divide 52-4i by 40 to get \frac{13}{10}-\frac{1}{10}i.
\frac{13}{10}
The real part of \frac{13}{10}-\frac{1}{10}i is \frac{13}{10}.