Skip to main content
Calculate Determinant
Tick mark Image
Evaluate
Tick mark Image

Share

det(\left(\begin{matrix}-23&-9&6\\8&3&-2\\-3&1&1\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}-23&-9&6&-23&-9\\8&3&-2&8&3\\-3&1&1&-3&1\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
-23\times 3-9\left(-2\right)\left(-3\right)+6\times 8=-75
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
-3\times 3\times 6-2\left(-23\right)+8\left(-9\right)=-80
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
-75-\left(-80\right)
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
5
Subtract -80 from -75.
det(\left(\begin{matrix}-23&-9&6\\8&3&-2\\-3&1&1\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
-23det(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))-\left(-9det(\left(\begin{matrix}8&-2\\-3&1\end{matrix}\right))\right)+6det(\left(\begin{matrix}8&3\\-3&1\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
-23\left(3-\left(-2\right)\right)-\left(-9\left(8-\left(-3\left(-2\right)\right)\right)\right)+6\left(8-\left(-3\times 3\right)\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
-23\times 5-\left(-9\times 2\right)+6\times 17
Simplify.
5
Add the terms to obtain the final result.