Skip to main content
Calculate Determinant
Tick mark Image
Evaluate
Tick mark Image

Share

det(\left(\begin{matrix}1&1&1\\k&1&1\\1&k&1\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}1&1&1&1&1\\k&1&1&k&1\\1&k&1&1&k\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
1+1+kk=k^{2}+2
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
1+k+k=2k+1
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
k^{2}+2-\left(2k+1\right)
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
\left(k-1\right)^{2}
Subtract 1+2k from 2+k^{2}.
det(\left(\begin{matrix}1&1&1\\k&1&1\\1&k&1\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
det(\left(\begin{matrix}1&1\\k&1\end{matrix}\right))-det(\left(\begin{matrix}k&1\\1&1\end{matrix}\right))+det(\left(\begin{matrix}k&1\\1&k\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
1-k-\left(k-1\right)+kk-1
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
1-k-\left(k-1\right)+k^{2}-1
Simplify.
\left(k-1\right)^{2}
Add the terms to obtain the final result.