Skip to main content
Evaluate
Tick mark Image
Transpose Matrix
Tick mark Image

Share

\left(\begin{matrix}2\\1\\3\end{matrix}\right)\left(\begin{matrix}-1&2\end{matrix}\right)
Matrix multiplication is defined if the number of columns of the first matrix is equal to the number of rows of the second matrix.
\left(\begin{matrix}2\left(-1\right)&\\&\\&\end{matrix}\right)
Multiply the first element of the first matrix by the first element of the second matrix to obtain the element in the first row, first column of the product matrix.
\left(\begin{matrix}2\left(-1\right)&2\times 2\\-1&2\\3\left(-1\right)&3\times 2\end{matrix}\right)
The remaining elements of the product matrix are found in the same way.
\left(\begin{matrix}-2&4\\-1&2\\-3&6\end{matrix}\right)
Simplify each element by multiplying the individual terms.