Skip to main content
Calculate Determinant
Tick mark Image
Evaluate
Tick mark Image

Share

det(\left(\begin{matrix}\frac{3}{13}&-\frac{5}{13}&\frac{4}{13}\\-\frac{4}{13}&\frac{11}{13}&-\frac{1}{13}\\\frac{1}{13}&\frac{71}{3}&-\frac{3}{13}\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}\frac{3}{13}&-\frac{5}{13}&\frac{4}{13}&\frac{3}{13}&-\frac{5}{13}\\-\frac{4}{13}&\frac{11}{13}&-\frac{1}{13}&-\frac{4}{13}&\frac{11}{13}\\\frac{1}{13}&\frac{71}{3}&-\frac{3}{13}&\frac{1}{13}&\frac{71}{3}\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
\frac{3}{13}\times \frac{11}{13}\left(-\frac{3}{13}\right)-\frac{5}{13}\left(-\frac{1}{13}\right)\times \frac{1}{13}+\frac{4}{13}\left(-\frac{4}{13}\right)\times \frac{71}{3}=-\frac{15050}{6591}
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
\frac{1}{13}\times \frac{11}{13}\times \frac{4}{13}+\frac{71}{3}\left(-\frac{1}{13}\right)\times \frac{3}{13}-\frac{3}{13}\left(-\frac{4}{13}\right)\left(-\frac{5}{13}\right)=-\frac{939}{2197}
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
-\frac{15050}{6591}-\left(-\frac{939}{2197}\right)
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
-\frac{941}{507}
Subtract -\frac{939}{2197} from -\frac{15050}{6591} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
det(\left(\begin{matrix}\frac{3}{13}&-\frac{5}{13}&\frac{4}{13}\\-\frac{4}{13}&\frac{11}{13}&-\frac{1}{13}\\\frac{1}{13}&\frac{71}{3}&-\frac{3}{13}\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
\frac{3}{13}det(\left(\begin{matrix}\frac{11}{13}&-\frac{1}{13}\\\frac{71}{3}&-\frac{3}{13}\end{matrix}\right))-\left(-\frac{5}{13}det(\left(\begin{matrix}-\frac{4}{13}&-\frac{1}{13}\\\frac{1}{13}&-\frac{3}{13}\end{matrix}\right))\right)+\frac{4}{13}det(\left(\begin{matrix}-\frac{4}{13}&\frac{11}{13}\\\frac{1}{13}&\frac{71}{3}\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
\frac{3}{13}\left(\frac{11}{13}\left(-\frac{3}{13}\right)-\frac{71}{3}\left(-\frac{1}{13}\right)\right)-\left(-\frac{5}{13}\left(-\frac{4}{13}\left(-\frac{3}{13}\right)-\frac{1}{13}\left(-\frac{1}{13}\right)\right)\right)+\frac{4}{13}\left(-\frac{4}{13}\times \frac{71}{3}-\frac{1}{13}\times \frac{11}{13}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
\frac{3}{13}\times \frac{824}{507}-\left(-\frac{5}{13}\times \frac{1}{13}\right)+\frac{4}{13}\left(-\frac{3725}{507}\right)
Simplify.
-\frac{941}{507}
Add the terms to obtain the final result.