Skip to main content
Calculate Determinant
Tick mark Image
Evaluate
Tick mark Image

Share

det(\left(\begin{matrix}1&1&-2\\3&1&a\\a&5&-1\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}1&1&-2&1&1\\3&1&a&3&1\\a&5&-1&a&5\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
-1+aa-2\times 3\times 5=a^{2}-31
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
a\left(-2\right)+5a-3=3a-3
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
a^{2}-31-\left(3a-3\right)
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
\left(a-7\right)\left(a+4\right)
Subtract -3+3a from -31+a^{2}.
det(\left(\begin{matrix}1&1&-2\\3&1&a\\a&5&-1\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
det(\left(\begin{matrix}1&a\\5&-1\end{matrix}\right))-det(\left(\begin{matrix}3&a\\a&-1\end{matrix}\right))-2det(\left(\begin{matrix}3&1\\a&5\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
-1-5a-\left(3\left(-1\right)-aa\right)-2\left(3\times 5-a\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
-5a-1-\left(-a^{2}-3\right)-2\left(15-a\right)
Simplify.
\left(a-7\right)\left(a+4\right)
Add the terms to obtain the final result.