Skip to main content
Calculate Determinant
Tick mark Image
Evaluate
Tick mark Image

Share

det(\left(\begin{matrix}0&1&-1\\-1&0&2\\1&-2&0\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}0&1&-1&0&1\\-1&0&2&-1&0\\1&-2&0&1&-2\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
2-\left(-\left(-2\right)\right)=0
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
\text{true}
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
0
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
det(\left(\begin{matrix}0&1&-1\\-1&0&2\\1&-2&0\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
-det(\left(\begin{matrix}-1&2\\1&0\end{matrix}\right))-det(\left(\begin{matrix}-1&0\\1&-2\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
-\left(-2\right)-\left(-\left(-2\right)\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
-\left(-2\right)-2
Simplify.
0
Add the terms to obtain the final result.