\left( \begin{array} { c c c } { - \frac { 2 } { 3 } } & { 1 } & { \frac { 4 } { 3 } } \\ { 1 } & { 1 } & { 1 } \\ { - \frac { 2 } { 3 } } & { 1 } & { - \frac { 2 } { 3 } } \end{array} \right)
Calculate Determinant
\frac{10}{3} = 3\frac{1}{3} = 3.3333333333333335
Evaluate
\left(\begin{matrix}-\frac{2}{3}&1&\frac{4}{3}\\1&1&1\\-\frac{2}{3}&1&-\frac{2}{3}\end{matrix}\right)
Share
Copied to clipboard
det(\left(\begin{matrix}-\frac{2}{3}&1&\frac{4}{3}\\1&1&1\\-\frac{2}{3}&1&-\frac{2}{3}\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}-\frac{2}{3}&1&\frac{4}{3}&-\frac{2}{3}&1\\1&1&1&1&1\\-\frac{2}{3}&1&-\frac{2}{3}&-\frac{2}{3}&1\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
-\frac{2}{3}\left(-\frac{2}{3}\right)-\frac{2}{3}+\frac{4}{3}=\frac{10}{9}
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
-\frac{2}{3}\times \frac{4}{3}-\frac{2}{3}-\frac{2}{3}=-\frac{20}{9}
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
\frac{10}{9}-\left(-\frac{20}{9}\right)
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
\frac{10}{3}
Subtract -\frac{20}{9} from \frac{10}{9} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
det(\left(\begin{matrix}-\frac{2}{3}&1&\frac{4}{3}\\1&1&1\\-\frac{2}{3}&1&-\frac{2}{3}\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
-\frac{2}{3}det(\left(\begin{matrix}1&1\\1&-\frac{2}{3}\end{matrix}\right))-det(\left(\begin{matrix}1&1\\-\frac{2}{3}&-\frac{2}{3}\end{matrix}\right))+\frac{4}{3}det(\left(\begin{matrix}1&1\\-\frac{2}{3}&1\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
-\frac{2}{3}\left(-\frac{2}{3}-1\right)-\left(-\frac{2}{3}-\left(-\frac{2}{3}\right)\right)+\frac{4}{3}\left(1-\left(-\frac{2}{3}\right)\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
-\frac{2}{3}\left(-\frac{5}{3}\right)+\frac{4}{3}\times \frac{5}{3}
Simplify.
\frac{10}{3}
Add the terms to obtain the final result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}