Skip to main content
Calculate Determinant
Tick mark Image
Evaluate
Tick mark Image

Share

det(\left(\begin{matrix}\frac{19}{22}&\frac{5}{11}&-\frac{2}{11}\\\frac{2}{11}&\frac{8}{11}&-\frac{1}{11}\\0&-\frac{1}{2}&1\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}\frac{19}{22}&\frac{5}{11}&-\frac{2}{11}&\frac{19}{22}&\frac{5}{11}\\\frac{2}{11}&\frac{8}{11}&-\frac{1}{11}&\frac{2}{11}&\frac{8}{11}\\0&-\frac{1}{2}&1&0&-\frac{1}{2}\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
\frac{19}{22}\times \frac{8}{11}-\frac{2}{11}\times \frac{2}{11}\left(-\frac{1}{2}\right)=\frac{78}{121}
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
-\frac{1}{2}\left(-\frac{1}{11}\right)\times \frac{19}{22}+\frac{2}{11}\times \frac{5}{11}=\frac{59}{484}
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
\frac{78}{121}-\frac{59}{484}
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
\frac{23}{44}
Subtract \frac{59}{484} from \frac{78}{121} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
det(\left(\begin{matrix}\frac{19}{22}&\frac{5}{11}&-\frac{2}{11}\\\frac{2}{11}&\frac{8}{11}&-\frac{1}{11}\\0&-\frac{1}{2}&1\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
\frac{19}{22}det(\left(\begin{matrix}\frac{8}{11}&-\frac{1}{11}\\-\frac{1}{2}&1\end{matrix}\right))-\frac{5}{11}det(\left(\begin{matrix}\frac{2}{11}&-\frac{1}{11}\\0&1\end{matrix}\right))-\frac{2}{11}det(\left(\begin{matrix}\frac{2}{11}&\frac{8}{11}\\0&-\frac{1}{2}\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
\frac{19}{22}\left(\frac{8}{11}-\left(-\frac{1}{2}\left(-\frac{1}{11}\right)\right)\right)-\frac{5}{11}\times \frac{2}{11}-\frac{2}{11}\times \frac{2}{11}\left(-\frac{1}{2}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
\frac{19}{22}\times \frac{15}{22}-\frac{5}{11}\times \frac{2}{11}-\frac{2}{11}\left(-\frac{1}{11}\right)
Simplify.
\frac{23}{44}
Add the terms to obtain the final result.