\left( \begin{array} { c } { - 16 } \\ { - 6 } \end{array} \right) + x \cdot \left( \begin{array} { c } { 33 } \\ { 0 } \end{array} \right) = \left( \begin{array} { c } { - 4 } \\ { 22 } \end{array} \right) + r \cdot \left( \begin{array} { c } { 0 } \\ { - 33 } \end{array} \right)
Solve for x, r
x=\frac{4}{11}\approx 0.363636364
r=\frac{28}{33}\approx 0.848484848
Share
Copied to clipboard
33x=-4+16
Consider the first equation. Add 16 to both sides.
33x=12
Add -4 and 16 to get 12.
x=\frac{12}{33}
Divide both sides by 33.
x=\frac{4}{11}
Reduce the fraction \frac{12}{33} to lowest terms by extracting and canceling out 3.
22-33r=-6
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
-33r=-6-22
Subtract 22 from both sides.
-33r=-28
Subtract 22 from -6 to get -28.
r=\frac{-28}{-33}
Divide both sides by -33.
r=\frac{28}{33}
Fraction \frac{-28}{-33} can be simplified to \frac{28}{33} by removing the negative sign from both the numerator and the denominator.
x=\frac{4}{11} r=\frac{28}{33}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}