Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-\left(-x^{2}-9\right)\right)\left(x-3\right)\left(3+x\right)-\left(3+x\right)^{2}-\left(4-x+x^{3}\right)^{2}+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
To find the opposite of x^{2}+9, find the opposite of each term.
\left(x^{2}+9\right)\left(x-3\right)\left(3+x\right)-\left(3+x\right)^{2}-\left(4-x+x^{3}\right)^{2}+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
To find the opposite of -x^{2}-9, find the opposite of each term.
\left(x^{3}-3x^{2}+9x-27\right)\left(3+x\right)-\left(3+x\right)^{2}-\left(4-x+x^{3}\right)^{2}+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
Use the distributive property to multiply x^{2}+9 by x-3.
x^{4}-81-\left(3+x\right)^{2}-\left(4-x+x^{3}\right)^{2}+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
Use the distributive property to multiply x^{3}-3x^{2}+9x-27 by 3+x and combine like terms.
x^{4}-81-\left(9+6x+x^{2}\right)-\left(4-x+x^{3}\right)^{2}+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+x\right)^{2}.
x^{4}-81-9-6x-x^{2}-\left(4-x+x^{3}\right)^{2}+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
To find the opposite of 9+6x+x^{2}, find the opposite of each term.
x^{4}-90-6x-x^{2}-\left(4-x+x^{3}\right)^{2}+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
Subtract 9 from -81 to get -90.
x^{4}-90-6x-x^{2}-\left(x^{6}-2x^{4}+8x^{3}+x^{2}-8x+16\right)+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
Square 4-x+x^{3}.
x^{4}-90-6x-x^{2}-x^{6}+2x^{4}-8x^{3}-x^{2}+8x-16+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
To find the opposite of x^{6}-2x^{4}+8x^{3}+x^{2}-8x+16, find the opposite of each term.
3x^{4}-90-6x-x^{2}-x^{6}-8x^{3}-x^{2}+8x-16+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
Combine x^{4} and 2x^{4} to get 3x^{4}.
3x^{4}-90-6x-2x^{2}-x^{6}-8x^{3}+8x-16+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
Combine -x^{2} and -x^{2} to get -2x^{2}.
3x^{4}-90+2x-2x^{2}-x^{6}-8x^{3}-16+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
Combine -6x and 8x to get 2x.
3x^{4}-106+2x-2x^{2}-x^{6}-8x^{3}+\left(x^{2}-1\right)^{3}-x\left(x+2\right)
Subtract 16 from -90 to get -106.
3x^{4}-106+2x-2x^{2}-x^{6}-8x^{3}+\left(x^{2}\right)^{3}-3\left(x^{2}\right)^{2}+3x^{2}-1-x\left(x+2\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x^{2}-1\right)^{3}.
3x^{4}-106+2x-2x^{2}-x^{6}-8x^{3}+x^{6}-3\left(x^{2}\right)^{2}+3x^{2}-1-x\left(x+2\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
3x^{4}-106+2x-2x^{2}-x^{6}-8x^{3}+x^{6}-3x^{4}+3x^{2}-1-x\left(x+2\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
3x^{4}-106+2x-2x^{2}-8x^{3}-3x^{4}+3x^{2}-1-x\left(x+2\right)
Combine -x^{6} and x^{6} to get 0.
-106+2x-2x^{2}-8x^{3}+3x^{2}-1-x\left(x+2\right)
Combine 3x^{4} and -3x^{4} to get 0.
-106+2x+x^{2}-8x^{3}-1-x\left(x+2\right)
Combine -2x^{2} and 3x^{2} to get x^{2}.
-107+2x+x^{2}-8x^{3}-x\left(x+2\right)
Subtract 1 from -106 to get -107.
-107+2x+x^{2}-8x^{3}-\left(x^{2}+2x\right)
Use the distributive property to multiply x by x+2.
-107+2x+x^{2}-8x^{3}-x^{2}-2x
To find the opposite of x^{2}+2x, find the opposite of each term.
-107+2x-8x^{3}-2x
Combine x^{2} and -x^{2} to get 0.
-107-8x^{3}
Combine 2x and -2x to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-\left(-x^{2}-9\right)\right)\left(x-3\right)\left(3+x\right)-\left(3+x\right)^{2}-\left(4-x+x^{3}\right)^{2}+\left(x^{2}-1\right)^{3}-x\left(x+2\right))
To find the opposite of x^{2}+9, find the opposite of each term.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(x^{2}+9\right)\left(x-3\right)\left(3+x\right)-\left(3+x\right)^{2}-\left(4-x+x^{3}\right)^{2}+\left(x^{2}-1\right)^{3}-x\left(x+2\right))
To find the opposite of -x^{2}-9, find the opposite of each term.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(x^{3}-3x^{2}+9x-27\right)\left(3+x\right)-\left(3+x\right)^{2}-\left(4-x+x^{3}\right)^{2}+\left(x^{2}-1\right)^{3}-x\left(x+2\right))
Use the distributive property to multiply x^{2}+9 by x-3.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}-81-\left(3+x\right)^{2}-\left(4-x+x^{3}\right)^{2}+\left(x^{2}-1\right)^{3}-x\left(x+2\right))
Use the distributive property to multiply x^{3}-3x^{2}+9x-27 by 3+x and combine like terms.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}-81-\left(9+6x+x^{2}\right)-\left(4-x+x^{3}\right)^{2}+\left(x^{2}-1\right)^{3}-x\left(x+2\right))
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+x\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}-81-9-6x-x^{2}-\left(4-x+x^{3}\right)^{2}+\left(x^{2}-1\right)^{3}-x\left(x+2\right))
To find the opposite of 9+6x+x^{2}, find the opposite of each term.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}-90-6x-x^{2}-\left(4-x+x^{3}\right)^{2}+\left(x^{2}-1\right)^{3}-x\left(x+2\right))
Subtract 9 from -81 to get -90.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}-90-6x-x^{2}-\left(x^{6}-2x^{4}+8x^{3}+x^{2}-8x+16\right)+\left(x^{2}-1\right)^{3}-x\left(x+2\right))
Square 4-x+x^{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}-90-6x-x^{2}-x^{6}+2x^{4}-8x^{3}-x^{2}+8x-16+\left(x^{2}-1\right)^{3}-x\left(x+2\right))
To find the opposite of x^{6}-2x^{4}+8x^{3}+x^{2}-8x+16, find the opposite of each term.
\frac{\mathrm{d}}{\mathrm{d}x}(3x^{4}-90-6x-x^{2}-x^{6}-8x^{3}-x^{2}+8x-16+\left(x^{2}-1\right)^{3}-x\left(x+2\right))
Combine x^{4} and 2x^{4} to get 3x^{4}.
\frac{\mathrm{d}}{\mathrm{d}x}(3x^{4}-90-6x-2x^{2}-x^{6}-8x^{3}+8x-16+\left(x^{2}-1\right)^{3}-x\left(x+2\right))
Combine -x^{2} and -x^{2} to get -2x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(3x^{4}-90+2x-2x^{2}-x^{6}-8x^{3}-16+\left(x^{2}-1\right)^{3}-x\left(x+2\right))
Combine -6x and 8x to get 2x.
\frac{\mathrm{d}}{\mathrm{d}x}(3x^{4}-106+2x-2x^{2}-x^{6}-8x^{3}+\left(x^{2}-1\right)^{3}-x\left(x+2\right))
Subtract 16 from -90 to get -106.
\frac{\mathrm{d}}{\mathrm{d}x}(3x^{4}-106+2x-2x^{2}-x^{6}-8x^{3}+\left(x^{2}\right)^{3}-3\left(x^{2}\right)^{2}+3x^{2}-1-x\left(x+2\right))
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x^{2}-1\right)^{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(3x^{4}-106+2x-2x^{2}-x^{6}-8x^{3}+x^{6}-3\left(x^{2}\right)^{2}+3x^{2}-1-x\left(x+2\right))
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\mathrm{d}}{\mathrm{d}x}(3x^{4}-106+2x-2x^{2}-x^{6}-8x^{3}+x^{6}-3x^{4}+3x^{2}-1-x\left(x+2\right))
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\mathrm{d}}{\mathrm{d}x}(3x^{4}-106+2x-2x^{2}-8x^{3}-3x^{4}+3x^{2}-1-x\left(x+2\right))
Combine -x^{6} and x^{6} to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(-106+2x-2x^{2}-8x^{3}+3x^{2}-1-x\left(x+2\right))
Combine 3x^{4} and -3x^{4} to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(-106+2x+x^{2}-8x^{3}-1-x\left(x+2\right))
Combine -2x^{2} and 3x^{2} to get x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-107+2x+x^{2}-8x^{3}-x\left(x+2\right))
Subtract 1 from -106 to get -107.
\frac{\mathrm{d}}{\mathrm{d}x}(-107+2x+x^{2}-8x^{3}-\left(x^{2}+2x\right))
Use the distributive property to multiply x by x+2.
\frac{\mathrm{d}}{\mathrm{d}x}(-107+2x+x^{2}-8x^{3}-x^{2}-2x)
To find the opposite of x^{2}+2x, find the opposite of each term.
\frac{\mathrm{d}}{\mathrm{d}x}(-107+2x-8x^{3}-2x)
Combine x^{2} and -x^{2} to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(-107-8x^{3})
Combine 2x and -2x to get 0.
3\left(-8\right)x^{3-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-24x^{3-1}
Multiply 3 times -8.
-24x^{2}
Subtract 1 from 3.