Skip to main content
Solve for p
Tick mark Image

Similar Problems from Web Search

Share

t^{2}+5t+12=0
Substitute t for p^{3}.
t=\frac{-5±\sqrt{5^{2}-4\times 1\times 12}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 5 for b, and 12 for c in the quadratic formula.
t=\frac{-5±\sqrt{-23}}{2}
Do the calculations.
t=\frac{-5+\sqrt{23}i}{2} t=\frac{-\sqrt{23}i-5}{2}
Solve the equation t=\frac{-5±\sqrt{-23}}{2} when ± is plus and when ± is minus.
p=\sqrt[3]{2}\sqrt[6]{3}e^{\frac{-\arctan(\frac{\sqrt{23}}{5})i+5\pi i}{3}} p=\sqrt[3]{2}\sqrt[6]{3}e^{\frac{-\arctan(\frac{\sqrt{23}}{5})i+3\pi i}{3}} p=\sqrt[3]{2}\sqrt[6]{3}e^{\frac{-\arctan(\frac{\sqrt{23}}{5})i+\pi i}{3}} p=\sqrt[3]{2}\sqrt[6]{3}e^{\frac{\arctan(\frac{\sqrt{23}}{5})i+5\pi i}{3}} p=\sqrt[3]{2}\sqrt[6]{3}e^{\frac{\arctan(\frac{\sqrt{23}}{5})i+3\pi i}{3}} p=\sqrt[3]{2}\sqrt[6]{3}e^{\frac{\left(\arctan(\frac{\sqrt{23}}{5})+\pi \right)i}{3}}
Since p=t^{3}, the solutions are obtained by solving the equation for each t.