Skip to main content
Solve for λ
Tick mark Image

Similar Problems from Web Search

Share

\lambda ^{2}-2+\left(\lambda -5\right)\left(-2\right)=2\left(\lambda +2\right)
Use the distributive property to multiply \lambda ^{2}-2 by 1.
\lambda ^{2}-2-2\lambda +10=2\left(\lambda +2\right)
Use the distributive property to multiply \lambda -5 by -2.
\lambda ^{2}+8-2\lambda =2\left(\lambda +2\right)
Add -2 and 10 to get 8.
\lambda ^{2}+8-2\lambda =2\lambda +4
Use the distributive property to multiply 2 by \lambda +2.
\lambda ^{2}+8-2\lambda -2\lambda =4
Subtract 2\lambda from both sides.
\lambda ^{2}+8-4\lambda =4
Combine -2\lambda and -2\lambda to get -4\lambda .
\lambda ^{2}+8-4\lambda -4=0
Subtract 4 from both sides.
\lambda ^{2}+4-4\lambda =0
Subtract 4 from 8 to get 4.
\lambda ^{2}-4\lambda +4=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-4 ab=4
To solve the equation, factor \lambda ^{2}-4\lambda +4 using formula \lambda ^{2}+\left(a+b\right)\lambda +ab=\left(\lambda +a\right)\left(\lambda +b\right). To find a and b, set up a system to be solved.
-1,-4 -2,-2
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 4.
-1-4=-5 -2-2=-4
Calculate the sum for each pair.
a=-2 b=-2
The solution is the pair that gives sum -4.
\left(\lambda -2\right)\left(\lambda -2\right)
Rewrite factored expression \left(\lambda +a\right)\left(\lambda +b\right) using the obtained values.
\left(\lambda -2\right)^{2}
Rewrite as a binomial square.
\lambda =2
To find equation solution, solve \lambda -2=0.
\lambda ^{2}-2+\left(\lambda -5\right)\left(-2\right)=2\left(\lambda +2\right)
Use the distributive property to multiply \lambda ^{2}-2 by 1.
\lambda ^{2}-2-2\lambda +10=2\left(\lambda +2\right)
Use the distributive property to multiply \lambda -5 by -2.
\lambda ^{2}+8-2\lambda =2\left(\lambda +2\right)
Add -2 and 10 to get 8.
\lambda ^{2}+8-2\lambda =2\lambda +4
Use the distributive property to multiply 2 by \lambda +2.
\lambda ^{2}+8-2\lambda -2\lambda =4
Subtract 2\lambda from both sides.
\lambda ^{2}+8-4\lambda =4
Combine -2\lambda and -2\lambda to get -4\lambda .
\lambda ^{2}+8-4\lambda -4=0
Subtract 4 from both sides.
\lambda ^{2}+4-4\lambda =0
Subtract 4 from 8 to get 4.
\lambda ^{2}-4\lambda +4=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-4 ab=1\times 4=4
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as \lambda ^{2}+a\lambda +b\lambda +4. To find a and b, set up a system to be solved.
-1,-4 -2,-2
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 4.
-1-4=-5 -2-2=-4
Calculate the sum for each pair.
a=-2 b=-2
The solution is the pair that gives sum -4.
\left(\lambda ^{2}-2\lambda \right)+\left(-2\lambda +4\right)
Rewrite \lambda ^{2}-4\lambda +4 as \left(\lambda ^{2}-2\lambda \right)+\left(-2\lambda +4\right).
\lambda \left(\lambda -2\right)-2\left(\lambda -2\right)
Factor out \lambda in the first and -2 in the second group.
\left(\lambda -2\right)\left(\lambda -2\right)
Factor out common term \lambda -2 by using distributive property.
\left(\lambda -2\right)^{2}
Rewrite as a binomial square.
\lambda =2
To find equation solution, solve \lambda -2=0.
\lambda ^{2}-2+\left(\lambda -5\right)\left(-2\right)=2\left(\lambda +2\right)
Use the distributive property to multiply \lambda ^{2}-2 by 1.
\lambda ^{2}-2-2\lambda +10=2\left(\lambda +2\right)
Use the distributive property to multiply \lambda -5 by -2.
\lambda ^{2}+8-2\lambda =2\left(\lambda +2\right)
Add -2 and 10 to get 8.
\lambda ^{2}+8-2\lambda =2\lambda +4
Use the distributive property to multiply 2 by \lambda +2.
\lambda ^{2}+8-2\lambda -2\lambda =4
Subtract 2\lambda from both sides.
\lambda ^{2}+8-4\lambda =4
Combine -2\lambda and -2\lambda to get -4\lambda .
\lambda ^{2}+8-4\lambda -4=0
Subtract 4 from both sides.
\lambda ^{2}+4-4\lambda =0
Subtract 4 from 8 to get 4.
\lambda ^{2}-4\lambda +4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\lambda =\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\lambda =\frac{-\left(-4\right)±\sqrt{16-4\times 4}}{2}
Square -4.
\lambda =\frac{-\left(-4\right)±\sqrt{16-16}}{2}
Multiply -4 times 4.
\lambda =\frac{-\left(-4\right)±\sqrt{0}}{2}
Add 16 to -16.
\lambda =-\frac{-4}{2}
Take the square root of 0.
\lambda =\frac{4}{2}
The opposite of -4 is 4.
\lambda =2
Divide 4 by 2.
\lambda ^{2}-2+\left(\lambda -5\right)\left(-2\right)=2\left(\lambda +2\right)
Use the distributive property to multiply \lambda ^{2}-2 by 1.
\lambda ^{2}-2-2\lambda +10=2\left(\lambda +2\right)
Use the distributive property to multiply \lambda -5 by -2.
\lambda ^{2}+8-2\lambda =2\left(\lambda +2\right)
Add -2 and 10 to get 8.
\lambda ^{2}+8-2\lambda =2\lambda +4
Use the distributive property to multiply 2 by \lambda +2.
\lambda ^{2}+8-2\lambda -2\lambda =4
Subtract 2\lambda from both sides.
\lambda ^{2}+8-4\lambda =4
Combine -2\lambda and -2\lambda to get -4\lambda .
\lambda ^{2}-4\lambda =4-8
Subtract 8 from both sides.
\lambda ^{2}-4\lambda =-4
Subtract 8 from 4 to get -4.
\lambda ^{2}-4\lambda +\left(-2\right)^{2}=-4+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\lambda ^{2}-4\lambda +4=-4+4
Square -2.
\lambda ^{2}-4\lambda +4=0
Add -4 to 4.
\left(\lambda -2\right)^{2}=0
Factor \lambda ^{2}-4\lambda +4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(\lambda -2\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
\lambda -2=0 \lambda -2=0
Simplify.
\lambda =2 \lambda =2
Add 2 to both sides of the equation.
\lambda =2
The equation is now solved. Solutions are the same.