Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{5}-2\sqrt{2}\right)\left(2\sqrt{5}+\sqrt{2}\right)
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
2\left(\sqrt{5}\right)^{2}+\sqrt{5}\sqrt{2}-4\sqrt{2}\sqrt{5}-2\left(\sqrt{2}\right)^{2}
Apply the distributive property by multiplying each term of \sqrt{5}-2\sqrt{2} by each term of 2\sqrt{5}+\sqrt{2}.
2\times 5+\sqrt{5}\sqrt{2}-4\sqrt{2}\sqrt{5}-2\left(\sqrt{2}\right)^{2}
The square of \sqrt{5} is 5.
10+\sqrt{5}\sqrt{2}-4\sqrt{2}\sqrt{5}-2\left(\sqrt{2}\right)^{2}
Multiply 2 and 5 to get 10.
10+\sqrt{10}-4\sqrt{2}\sqrt{5}-2\left(\sqrt{2}\right)^{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
10+\sqrt{10}-4\sqrt{10}-2\left(\sqrt{2}\right)^{2}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
10-3\sqrt{10}-2\left(\sqrt{2}\right)^{2}
Combine \sqrt{10} and -4\sqrt{10} to get -3\sqrt{10}.
10-3\sqrt{10}-2\times 2
The square of \sqrt{2} is 2.
10-3\sqrt{10}-4
Multiply -2 and 2 to get -4.
6-3\sqrt{10}
Subtract 4 from 10 to get 6.