Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{3}-1\right)\left(\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1\right)-\sqrt{75}-\sqrt{12}-2
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+1\right)^{2}.
\left(\sqrt{3}-1\right)\left(3+2\sqrt{3}+1\right)-\sqrt{75}-\sqrt{12}-2
The square of \sqrt{3} is 3.
\left(\sqrt{3}-1\right)\left(4+2\sqrt{3}\right)-\sqrt{75}-\sqrt{12}-2
Add 3 and 1 to get 4.
2\sqrt{3}+2\left(\sqrt{3}\right)^{2}-4-\sqrt{75}-\sqrt{12}-2
Use the distributive property to multiply \sqrt{3}-1 by 4+2\sqrt{3} and combine like terms.
2\sqrt{3}+2\times 3-4-\sqrt{75}-\sqrt{12}-2
The square of \sqrt{3} is 3.
2\sqrt{3}+6-4-\sqrt{75}-\sqrt{12}-2
Multiply 2 and 3 to get 6.
2\sqrt{3}+2-\sqrt{75}-\sqrt{12}-2
Subtract 4 from 6 to get 2.
2\sqrt{3}+2-5\sqrt{3}-\sqrt{12}-2
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
-3\sqrt{3}+2-\sqrt{12}-2
Combine 2\sqrt{3} and -5\sqrt{3} to get -3\sqrt{3}.
-3\sqrt{3}+2-2\sqrt{3}-2
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
-5\sqrt{3}+2-2
Combine -3\sqrt{3} and -2\sqrt{3} to get -5\sqrt{3}.
-5\sqrt{3}
Subtract 2 from 2 to get 0.