Evaluate
\frac{\sqrt{2}}{4}+3\sqrt{6}\approx 7.702022619
Share
Copied to clipboard
2\sqrt{6}+\sqrt{\frac{1}{2}}-\left(\sqrt{\frac{1}{8}}-\sqrt{6}\right)
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
2\sqrt{6}+\frac{\sqrt{1}}{\sqrt{2}}-\left(\sqrt{\frac{1}{8}}-\sqrt{6}\right)
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
2\sqrt{6}+\frac{1}{\sqrt{2}}-\left(\sqrt{\frac{1}{8}}-\sqrt{6}\right)
Calculate the square root of 1 and get 1.
2\sqrt{6}+\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\left(\sqrt{\frac{1}{8}}-\sqrt{6}\right)
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
2\sqrt{6}+\frac{\sqrt{2}}{2}-\left(\sqrt{\frac{1}{8}}-\sqrt{6}\right)
The square of \sqrt{2} is 2.
\frac{2\times 2\sqrt{6}}{2}+\frac{\sqrt{2}}{2}-\left(\sqrt{\frac{1}{8}}-\sqrt{6}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2\sqrt{6} times \frac{2}{2}.
\frac{2\times 2\sqrt{6}+\sqrt{2}}{2}-\left(\sqrt{\frac{1}{8}}-\sqrt{6}\right)
Since \frac{2\times 2\sqrt{6}}{2} and \frac{\sqrt{2}}{2} have the same denominator, add them by adding their numerators.
\frac{4\sqrt{6}+\sqrt{2}}{2}-\left(\sqrt{\frac{1}{8}}-\sqrt{6}\right)
Do the multiplications in 2\times 2\sqrt{6}+\sqrt{2}.
\frac{4\sqrt{6}+\sqrt{2}}{2}-\left(\frac{\sqrt{1}}{\sqrt{8}}-\sqrt{6}\right)
Rewrite the square root of the division \sqrt{\frac{1}{8}} as the division of square roots \frac{\sqrt{1}}{\sqrt{8}}.
\frac{4\sqrt{6}+\sqrt{2}}{2}-\left(\frac{1}{\sqrt{8}}-\sqrt{6}\right)
Calculate the square root of 1 and get 1.
\frac{4\sqrt{6}+\sqrt{2}}{2}-\left(\frac{1}{2\sqrt{2}}-\sqrt{6}\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{4\sqrt{6}+\sqrt{2}}{2}-\left(\frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}-\sqrt{6}\right)
Rationalize the denominator of \frac{1}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{4\sqrt{6}+\sqrt{2}}{2}-\left(\frac{\sqrt{2}}{2\times 2}-\sqrt{6}\right)
The square of \sqrt{2} is 2.
\frac{4\sqrt{6}+\sqrt{2}}{2}-\left(\frac{\sqrt{2}}{4}-\sqrt{6}\right)
Multiply 2 and 2 to get 4.
\frac{4\sqrt{6}+\sqrt{2}}{2}-\left(\frac{\sqrt{2}}{4}-\frac{4\sqrt{6}}{4}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{6} times \frac{4}{4}.
\frac{4\sqrt{6}+\sqrt{2}}{2}-\frac{\sqrt{2}-4\sqrt{6}}{4}
Since \frac{\sqrt{2}}{4} and \frac{4\sqrt{6}}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{2\left(4\sqrt{6}+\sqrt{2}\right)}{4}-\frac{\sqrt{2}-4\sqrt{6}}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 4 is 4. Multiply \frac{4\sqrt{6}+\sqrt{2}}{2} times \frac{2}{2}.
\frac{2\left(4\sqrt{6}+\sqrt{2}\right)-\left(\sqrt{2}-4\sqrt{6}\right)}{4}
Since \frac{2\left(4\sqrt{6}+\sqrt{2}\right)}{4} and \frac{\sqrt{2}-4\sqrt{6}}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{8\sqrt{6}+2\sqrt{2}-\sqrt{2}+4\sqrt{6}}{4}
Do the multiplications in 2\left(4\sqrt{6}+\sqrt{2}\right)-\left(\sqrt{2}-4\sqrt{6}\right).
\frac{12\sqrt{6}+\sqrt{2}}{4}
Do the calculations in 8\sqrt{6}+2\sqrt{2}-\sqrt{2}+4\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}