Evaluate
6
Factor
2\times 3
Share
Copied to clipboard
\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}+\left(\sqrt{3}-2\right)^{2}+\sqrt{48}
Consider \left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2-\left(\sqrt{3}\right)^{2}+\left(\sqrt{3}-2\right)^{2}+\sqrt{48}
The square of \sqrt{2} is 2.
2-3+\left(\sqrt{3}-2\right)^{2}+\sqrt{48}
The square of \sqrt{3} is 3.
-1+\left(\sqrt{3}-2\right)^{2}+\sqrt{48}
Subtract 3 from 2 to get -1.
-1+\left(\sqrt{3}\right)^{2}-4\sqrt{3}+4+\sqrt{48}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-2\right)^{2}.
-1+3-4\sqrt{3}+4+\sqrt{48}
The square of \sqrt{3} is 3.
-1+7-4\sqrt{3}+\sqrt{48}
Add 3 and 4 to get 7.
6-4\sqrt{3}+\sqrt{48}
Add -1 and 7 to get 6.
6-4\sqrt{3}+4\sqrt{3}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
6
Combine -4\sqrt{3} and 4\sqrt{3} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}