Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}+\left(\sqrt{3}-2\right)^{2}+\sqrt{48}
Consider \left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2-\left(\sqrt{3}\right)^{2}+\left(\sqrt{3}-2\right)^{2}+\sqrt{48}
The square of \sqrt{2} is 2.
2-3+\left(\sqrt{3}-2\right)^{2}+\sqrt{48}
The square of \sqrt{3} is 3.
-1+\left(\sqrt{3}-2\right)^{2}+\sqrt{48}
Subtract 3 from 2 to get -1.
-1+\left(\sqrt{3}\right)^{2}-4\sqrt{3}+4+\sqrt{48}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-2\right)^{2}.
-1+3-4\sqrt{3}+4+\sqrt{48}
The square of \sqrt{3} is 3.
-1+7-4\sqrt{3}+\sqrt{48}
Add 3 and 4 to get 7.
6-4\sqrt{3}+\sqrt{48}
Add -1 and 7 to get 6.
6-4\sqrt{3}+4\sqrt{3}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
6
Combine -4\sqrt{3} and 4\sqrt{3} to get 0.