Evaluate
\frac{4}{9}\approx 0.444444444
Factor
\frac{2 ^ {2}}{3 ^ {2}} = 0.4444444444444444
Share
Copied to clipboard
\left(\left(\frac{3}{6}+\frac{4}{6}\right)\left(\frac{3}{4}+\frac{2}{7}\right)-\left(\frac{1}{6}+\frac{5}{8}\right)\left(\frac{1}{2}+\frac{2}{3}-\frac{1}{6}\right)\right)\left(\frac{2}{5}+\frac{1}{2}\times \frac{4}{3}\right)
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{2}{3} to fractions with denominator 6.
\left(\frac{3+4}{6}\left(\frac{3}{4}+\frac{2}{7}\right)-\left(\frac{1}{6}+\frac{5}{8}\right)\left(\frac{1}{2}+\frac{2}{3}-\frac{1}{6}\right)\right)\left(\frac{2}{5}+\frac{1}{2}\times \frac{4}{3}\right)
Since \frac{3}{6} and \frac{4}{6} have the same denominator, add them by adding their numerators.
\left(\frac{7}{6}\left(\frac{3}{4}+\frac{2}{7}\right)-\left(\frac{1}{6}+\frac{5}{8}\right)\left(\frac{1}{2}+\frac{2}{3}-\frac{1}{6}\right)\right)\left(\frac{2}{5}+\frac{1}{2}\times \frac{4}{3}\right)
Add 3 and 4 to get 7.
\left(\frac{7}{6}\left(\frac{21}{28}+\frac{8}{28}\right)-\left(\frac{1}{6}+\frac{5}{8}\right)\left(\frac{1}{2}+\frac{2}{3}-\frac{1}{6}\right)\right)\left(\frac{2}{5}+\frac{1}{2}\times \frac{4}{3}\right)
Least common multiple of 4 and 7 is 28. Convert \frac{3}{4} and \frac{2}{7} to fractions with denominator 28.
\left(\frac{7}{6}\times \frac{21+8}{28}-\left(\frac{1}{6}+\frac{5}{8}\right)\left(\frac{1}{2}+\frac{2}{3}-\frac{1}{6}\right)\right)\left(\frac{2}{5}+\frac{1}{2}\times \frac{4}{3}\right)
Since \frac{21}{28} and \frac{8}{28} have the same denominator, add them by adding their numerators.
\left(\frac{7}{6}\times \frac{29}{28}-\left(\frac{1}{6}+\frac{5}{8}\right)\left(\frac{1}{2}+\frac{2}{3}-\frac{1}{6}\right)\right)\left(\frac{2}{5}+\frac{1}{2}\times \frac{4}{3}\right)
Add 21 and 8 to get 29.
\left(\frac{7\times 29}{6\times 28}-\left(\frac{1}{6}+\frac{5}{8}\right)\left(\frac{1}{2}+\frac{2}{3}-\frac{1}{6}\right)\right)\left(\frac{2}{5}+\frac{1}{2}\times \frac{4}{3}\right)
Multiply \frac{7}{6} times \frac{29}{28} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{203}{168}-\left(\frac{1}{6}+\frac{5}{8}\right)\left(\frac{1}{2}+\frac{2}{3}-\frac{1}{6}\right)\right)\left(\frac{2}{5}+\frac{1}{2}\times \frac{4}{3}\right)
Do the multiplications in the fraction \frac{7\times 29}{6\times 28}.
\left(\frac{29}{24}-\left(\frac{1}{6}+\frac{5}{8}\right)\left(\frac{1}{2}+\frac{2}{3}-\frac{1}{6}\right)\right)\left(\frac{2}{5}+\frac{1}{2}\times \frac{4}{3}\right)
Reduce the fraction \frac{203}{168} to lowest terms by extracting and canceling out 7.
\left(\frac{29}{24}-\left(\frac{4}{24}+\frac{15}{24}\right)\left(\frac{1}{2}+\frac{2}{3}-\frac{1}{6}\right)\right)\left(\frac{2}{5}+\frac{1}{2}\times \frac{4}{3}\right)
Least common multiple of 6 and 8 is 24. Convert \frac{1}{6} and \frac{5}{8} to fractions with denominator 24.
\left(\frac{29}{24}-\frac{4+15}{24}\left(\frac{1}{2}+\frac{2}{3}-\frac{1}{6}\right)\right)\left(\frac{2}{5}+\frac{1}{2}\times \frac{4}{3}\right)
Since \frac{4}{24} and \frac{15}{24} have the same denominator, add them by adding their numerators.
\left(\frac{29}{24}-\frac{19}{24}\left(\frac{1}{2}+\frac{2}{3}-\frac{1}{6}\right)\right)\left(\frac{2}{5}+\frac{1}{2}\times \frac{4}{3}\right)
Add 4 and 15 to get 19.
\left(\frac{29}{24}-\frac{19}{24}\left(\frac{3}{6}+\frac{4}{6}-\frac{1}{6}\right)\right)\left(\frac{2}{5}+\frac{1}{2}\times \frac{4}{3}\right)
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{2}{3} to fractions with denominator 6.
\left(\frac{29}{24}-\frac{19}{24}\left(\frac{3+4}{6}-\frac{1}{6}\right)\right)\left(\frac{2}{5}+\frac{1}{2}\times \frac{4}{3}\right)
Since \frac{3}{6} and \frac{4}{6} have the same denominator, add them by adding their numerators.
\left(\frac{29}{24}-\frac{19}{24}\left(\frac{7}{6}-\frac{1}{6}\right)\right)\left(\frac{2}{5}+\frac{1}{2}\times \frac{4}{3}\right)
Add 3 and 4 to get 7.
\left(\frac{29}{24}-\frac{19}{24}\times \frac{7-1}{6}\right)\left(\frac{2}{5}+\frac{1}{2}\times \frac{4}{3}\right)
Since \frac{7}{6} and \frac{1}{6} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{29}{24}-\frac{19}{24}\times \frac{6}{6}\right)\left(\frac{2}{5}+\frac{1}{2}\times \frac{4}{3}\right)
Subtract 1 from 7 to get 6.
\left(\frac{29}{24}-\frac{19}{24}\times 1\right)\left(\frac{2}{5}+\frac{1}{2}\times \frac{4}{3}\right)
Divide 6 by 6 to get 1.
\left(\frac{29}{24}-\frac{19}{24}\right)\left(\frac{2}{5}+\frac{1}{2}\times \frac{4}{3}\right)
Multiply \frac{19}{24} and 1 to get \frac{19}{24}.
\frac{29-19}{24}\left(\frac{2}{5}+\frac{1}{2}\times \frac{4}{3}\right)
Since \frac{29}{24} and \frac{19}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{10}{24}\left(\frac{2}{5}+\frac{1}{2}\times \frac{4}{3}\right)
Subtract 19 from 29 to get 10.
\frac{5}{12}\left(\frac{2}{5}+\frac{1}{2}\times \frac{4}{3}\right)
Reduce the fraction \frac{10}{24} to lowest terms by extracting and canceling out 2.
\frac{5}{12}\left(\frac{2}{5}+\frac{1\times 4}{2\times 3}\right)
Multiply \frac{1}{2} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{12}\left(\frac{2}{5}+\frac{4}{6}\right)
Do the multiplications in the fraction \frac{1\times 4}{2\times 3}.
\frac{5}{12}\left(\frac{2}{5}+\frac{2}{3}\right)
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{5}{12}\left(\frac{6}{15}+\frac{10}{15}\right)
Least common multiple of 5 and 3 is 15. Convert \frac{2}{5} and \frac{2}{3} to fractions with denominator 15.
\frac{5}{12}\times \frac{6+10}{15}
Since \frac{6}{15} and \frac{10}{15} have the same denominator, add them by adding their numerators.
\frac{5}{12}\times \frac{16}{15}
Add 6 and 10 to get 16.
\frac{5\times 16}{12\times 15}
Multiply \frac{5}{12} times \frac{16}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{80}{180}
Do the multiplications in the fraction \frac{5\times 16}{12\times 15}.
\frac{4}{9}
Reduce the fraction \frac{80}{180} to lowest terms by extracting and canceling out 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}