Evaluate
\frac{1}{x}
Expand
\frac{1}{x}
Graph
Share
Copied to clipboard
\left(\left(\frac{1}{\left(x-1\right)x^{3}}-\frac{1}{\left(x+1\right)x^{3}}\right)\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}\right)\left(\frac{1}{x+1}+x-1\right)
Factor x^{4}-x^{3}. Factor x^{4}+x^{3}.
\left(\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)x^{3}}-\frac{x-1}{\left(x-1\right)\left(x+1\right)x^{3}}\right)\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}\right)\left(\frac{1}{x+1}+x-1\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)x^{3} and \left(x+1\right)x^{3} is \left(x-1\right)\left(x+1\right)x^{3}. Multiply \frac{1}{\left(x-1\right)x^{3}} times \frac{x+1}{x+1}. Multiply \frac{1}{\left(x+1\right)x^{3}} times \frac{x-1}{x-1}.
\left(\frac{x+1-\left(x-1\right)}{\left(x-1\right)\left(x+1\right)x^{3}}\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}\right)\left(\frac{1}{x+1}+x-1\right)
Since \frac{x+1}{\left(x-1\right)\left(x+1\right)x^{3}} and \frac{x-1}{\left(x-1\right)\left(x+1\right)x^{3}} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{x+1-x+1}{\left(x-1\right)\left(x+1\right)x^{3}}\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}\right)\left(\frac{1}{x+1}+x-1\right)
Do the multiplications in x+1-\left(x-1\right).
\left(\frac{2}{\left(x-1\right)\left(x+1\right)x^{3}}\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}\right)\left(\frac{1}{x+1}+x-1\right)
Combine like terms in x+1-x+1.
\left(\frac{2\left(x^{2}-1\right)}{\left(x-1\right)\left(x+1\right)x^{3}\times 2}+\frac{1}{x^{2}}\right)\left(\frac{1}{x+1}+x-1\right)
Multiply \frac{2}{\left(x-1\right)\left(x+1\right)x^{3}} times \frac{x^{2}-1}{2} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{x^{2}-1}{\left(x-1\right)\left(x+1\right)x^{3}}+\frac{1}{x^{2}}\right)\left(\frac{1}{x+1}+x-1\right)
Cancel out 2 in both numerator and denominator.
\left(\frac{x^{2}-1}{\left(x-1\right)\left(x+1\right)x^{3}}+\frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)x^{3}}\right)\left(\frac{1}{x+1}+x-1\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right)x^{3} and x^{2} is \left(x-1\right)\left(x+1\right)x^{3}. Multiply \frac{1}{x^{2}} times \frac{x\left(x-1\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}.
\frac{x^{2}-1+x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)x^{3}}\left(\frac{1}{x+1}+x-1\right)
Since \frac{x^{2}-1}{\left(x-1\right)\left(x+1\right)x^{3}} and \frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)x^{3}} have the same denominator, add them by adding their numerators.
\frac{x^{2}-1+x^{3}+x^{2}-x^{2}-x}{\left(x-1\right)\left(x+1\right)x^{3}}\left(\frac{1}{x+1}+x-1\right)
Do the multiplications in x^{2}-1+x\left(x-1\right)\left(x+1\right).
\frac{x^{2}-1+x^{3}-x}{\left(x-1\right)\left(x+1\right)x^{3}}\left(\frac{1}{x+1}+x-1\right)
Combine like terms in x^{2}-1+x^{3}+x^{2}-x^{2}-x.
\frac{\left(x-1\right)\left(x+1\right)^{2}}{\left(x-1\right)\left(x+1\right)x^{3}}\left(\frac{1}{x+1}+x-1\right)
Factor the expressions that are not already factored in \frac{x^{2}-1+x^{3}-x}{\left(x-1\right)\left(x+1\right)x^{3}}.
\frac{x+1}{x^{3}}\left(\frac{1}{x+1}+x-1\right)
Cancel out \left(x-1\right)\left(x+1\right) in both numerator and denominator.
\frac{x+1}{x^{3}}\left(\frac{1}{x+1}+\frac{\left(x-1\right)\left(x+1\right)}{x+1}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x-1 times \frac{x+1}{x+1}.
\frac{x+1}{x^{3}}\times \frac{1+\left(x-1\right)\left(x+1\right)}{x+1}
Since \frac{1}{x+1} and \frac{\left(x-1\right)\left(x+1\right)}{x+1} have the same denominator, add them by adding their numerators.
\frac{x+1}{x^{3}}\times \frac{1+x^{2}+x-x-1}{x+1}
Do the multiplications in 1+\left(x-1\right)\left(x+1\right).
\frac{x+1}{x^{3}}\times \frac{x^{2}}{x+1}
Combine like terms in 1+x^{2}+x-x-1.
\frac{\left(x+1\right)x^{2}}{x^{3}\left(x+1\right)}
Multiply \frac{x+1}{x^{3}} times \frac{x^{2}}{x+1} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{x}
Cancel out \left(x+1\right)x^{2} in both numerator and denominator.
\left(\left(\frac{1}{\left(x-1\right)x^{3}}-\frac{1}{\left(x+1\right)x^{3}}\right)\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}\right)\left(\frac{1}{x+1}+x-1\right)
Factor x^{4}-x^{3}. Factor x^{4}+x^{3}.
\left(\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)x^{3}}-\frac{x-1}{\left(x-1\right)\left(x+1\right)x^{3}}\right)\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}\right)\left(\frac{1}{x+1}+x-1\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)x^{3} and \left(x+1\right)x^{3} is \left(x-1\right)\left(x+1\right)x^{3}. Multiply \frac{1}{\left(x-1\right)x^{3}} times \frac{x+1}{x+1}. Multiply \frac{1}{\left(x+1\right)x^{3}} times \frac{x-1}{x-1}.
\left(\frac{x+1-\left(x-1\right)}{\left(x-1\right)\left(x+1\right)x^{3}}\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}\right)\left(\frac{1}{x+1}+x-1\right)
Since \frac{x+1}{\left(x-1\right)\left(x+1\right)x^{3}} and \frac{x-1}{\left(x-1\right)\left(x+1\right)x^{3}} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{x+1-x+1}{\left(x-1\right)\left(x+1\right)x^{3}}\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}\right)\left(\frac{1}{x+1}+x-1\right)
Do the multiplications in x+1-\left(x-1\right).
\left(\frac{2}{\left(x-1\right)\left(x+1\right)x^{3}}\times \frac{x^{2}-1}{2}+\frac{1}{x^{2}}\right)\left(\frac{1}{x+1}+x-1\right)
Combine like terms in x+1-x+1.
\left(\frac{2\left(x^{2}-1\right)}{\left(x-1\right)\left(x+1\right)x^{3}\times 2}+\frac{1}{x^{2}}\right)\left(\frac{1}{x+1}+x-1\right)
Multiply \frac{2}{\left(x-1\right)\left(x+1\right)x^{3}} times \frac{x^{2}-1}{2} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{x^{2}-1}{\left(x-1\right)\left(x+1\right)x^{3}}+\frac{1}{x^{2}}\right)\left(\frac{1}{x+1}+x-1\right)
Cancel out 2 in both numerator and denominator.
\left(\frac{x^{2}-1}{\left(x-1\right)\left(x+1\right)x^{3}}+\frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)x^{3}}\right)\left(\frac{1}{x+1}+x-1\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right)x^{3} and x^{2} is \left(x-1\right)\left(x+1\right)x^{3}. Multiply \frac{1}{x^{2}} times \frac{x\left(x-1\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}.
\frac{x^{2}-1+x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)x^{3}}\left(\frac{1}{x+1}+x-1\right)
Since \frac{x^{2}-1}{\left(x-1\right)\left(x+1\right)x^{3}} and \frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)x^{3}} have the same denominator, add them by adding their numerators.
\frac{x^{2}-1+x^{3}+x^{2}-x^{2}-x}{\left(x-1\right)\left(x+1\right)x^{3}}\left(\frac{1}{x+1}+x-1\right)
Do the multiplications in x^{2}-1+x\left(x-1\right)\left(x+1\right).
\frac{x^{2}-1+x^{3}-x}{\left(x-1\right)\left(x+1\right)x^{3}}\left(\frac{1}{x+1}+x-1\right)
Combine like terms in x^{2}-1+x^{3}+x^{2}-x^{2}-x.
\frac{\left(x-1\right)\left(x+1\right)^{2}}{\left(x-1\right)\left(x+1\right)x^{3}}\left(\frac{1}{x+1}+x-1\right)
Factor the expressions that are not already factored in \frac{x^{2}-1+x^{3}-x}{\left(x-1\right)\left(x+1\right)x^{3}}.
\frac{x+1}{x^{3}}\left(\frac{1}{x+1}+x-1\right)
Cancel out \left(x-1\right)\left(x+1\right) in both numerator and denominator.
\frac{x+1}{x^{3}}\left(\frac{1}{x+1}+\frac{\left(x-1\right)\left(x+1\right)}{x+1}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x-1 times \frac{x+1}{x+1}.
\frac{x+1}{x^{3}}\times \frac{1+\left(x-1\right)\left(x+1\right)}{x+1}
Since \frac{1}{x+1} and \frac{\left(x-1\right)\left(x+1\right)}{x+1} have the same denominator, add them by adding their numerators.
\frac{x+1}{x^{3}}\times \frac{1+x^{2}+x-x-1}{x+1}
Do the multiplications in 1+\left(x-1\right)\left(x+1\right).
\frac{x+1}{x^{3}}\times \frac{x^{2}}{x+1}
Combine like terms in 1+x^{2}+x-x-1.
\frac{\left(x+1\right)x^{2}}{x^{3}\left(x+1\right)}
Multiply \frac{x+1}{x^{3}} times \frac{x^{2}}{x+1} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{x}
Cancel out \left(x+1\right)x^{2} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}