Evaluate
\frac{19x\left(9x-1\right)}{96\left(x^{2}-4\right)}
Expand
\frac{19\left(9x^{2}-x\right)}{96\left(x^{2}-4\right)}
Graph
Share
Copied to clipboard
\left(\frac{x-2}{3\left(x+2\right)}+\frac{1}{\left(x-2\right)\left(x+2\right)}+\frac{x-6}{6-3x}\right)\times \frac{9x^{2}-x}{32}
Factor 3x+6. Factor x^{2}-4.
\left(\frac{\left(x-2\right)\left(x-2\right)}{3\left(x-2\right)\left(x+2\right)}+\frac{3}{3\left(x-2\right)\left(x+2\right)}+\frac{x-6}{6-3x}\right)\times \frac{9x^{2}-x}{32}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(x+2\right) and \left(x-2\right)\left(x+2\right) is 3\left(x-2\right)\left(x+2\right). Multiply \frac{x-2}{3\left(x+2\right)} times \frac{x-2}{x-2}. Multiply \frac{1}{\left(x-2\right)\left(x+2\right)} times \frac{3}{3}.
\left(\frac{\left(x-2\right)\left(x-2\right)+3}{3\left(x-2\right)\left(x+2\right)}+\frac{x-6}{6-3x}\right)\times \frac{9x^{2}-x}{32}
Since \frac{\left(x-2\right)\left(x-2\right)}{3\left(x-2\right)\left(x+2\right)} and \frac{3}{3\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\left(\frac{x^{2}-2x-2x+4+3}{3\left(x-2\right)\left(x+2\right)}+\frac{x-6}{6-3x}\right)\times \frac{9x^{2}-x}{32}
Do the multiplications in \left(x-2\right)\left(x-2\right)+3.
\left(\frac{x^{2}-4x+7}{3\left(x-2\right)\left(x+2\right)}+\frac{x-6}{6-3x}\right)\times \frac{9x^{2}-x}{32}
Combine like terms in x^{2}-2x-2x+4+3.
\left(\frac{x^{2}-4x+7}{3\left(x-2\right)\left(x+2\right)}+\frac{x-6}{3\left(-x+2\right)}\right)\times \frac{9x^{2}-x}{32}
Factor 6-3x.
\left(\frac{x^{2}-4x+7}{3\left(x-2\right)\left(x+2\right)}+\frac{\left(x-6\right)\left(-1\right)\left(x+2\right)}{3\left(x-2\right)\left(x+2\right)}\right)\times \frac{9x^{2}-x}{32}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(x-2\right)\left(x+2\right) and 3\left(-x+2\right) is 3\left(x-2\right)\left(x+2\right). Multiply \frac{x-6}{3\left(-x+2\right)} times \frac{-\left(x+2\right)}{-\left(x+2\right)}.
\frac{x^{2}-4x+7+\left(x-6\right)\left(-1\right)\left(x+2\right)}{3\left(x-2\right)\left(x+2\right)}\times \frac{9x^{2}-x}{32}
Since \frac{x^{2}-4x+7}{3\left(x-2\right)\left(x+2\right)} and \frac{\left(x-6\right)\left(-1\right)\left(x+2\right)}{3\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-4x+7-x^{2}-2x+6x+12}{3\left(x-2\right)\left(x+2\right)}\times \frac{9x^{2}-x}{32}
Do the multiplications in x^{2}-4x+7+\left(x-6\right)\left(-1\right)\left(x+2\right).
\frac{19}{3\left(x-2\right)\left(x+2\right)}\times \frac{9x^{2}-x}{32}
Combine like terms in x^{2}-4x+7-x^{2}-2x+6x+12.
\frac{19\left(9x^{2}-x\right)}{3\left(x-2\right)\left(x+2\right)\times 32}
Multiply \frac{19}{3\left(x-2\right)\left(x+2\right)} times \frac{9x^{2}-x}{32} by multiplying numerator times numerator and denominator times denominator.
\frac{19\left(9x^{2}-x\right)}{96\left(x-2\right)\left(x+2\right)}
Multiply 3 and 32 to get 96.
\frac{171x^{2}-19x}{96\left(x-2\right)\left(x+2\right)}
Use the distributive property to multiply 19 by 9x^{2}-x.
\frac{171x^{2}-19x}{\left(96x-192\right)\left(x+2\right)}
Use the distributive property to multiply 96 by x-2.
\frac{171x^{2}-19x}{96x^{2}-384}
Use the distributive property to multiply 96x-192 by x+2 and combine like terms.
\left(\frac{x-2}{3\left(x+2\right)}+\frac{1}{\left(x-2\right)\left(x+2\right)}+\frac{x-6}{6-3x}\right)\times \frac{9x^{2}-x}{32}
Factor 3x+6. Factor x^{2}-4.
\left(\frac{\left(x-2\right)\left(x-2\right)}{3\left(x-2\right)\left(x+2\right)}+\frac{3}{3\left(x-2\right)\left(x+2\right)}+\frac{x-6}{6-3x}\right)\times \frac{9x^{2}-x}{32}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(x+2\right) and \left(x-2\right)\left(x+2\right) is 3\left(x-2\right)\left(x+2\right). Multiply \frac{x-2}{3\left(x+2\right)} times \frac{x-2}{x-2}. Multiply \frac{1}{\left(x-2\right)\left(x+2\right)} times \frac{3}{3}.
\left(\frac{\left(x-2\right)\left(x-2\right)+3}{3\left(x-2\right)\left(x+2\right)}+\frac{x-6}{6-3x}\right)\times \frac{9x^{2}-x}{32}
Since \frac{\left(x-2\right)\left(x-2\right)}{3\left(x-2\right)\left(x+2\right)} and \frac{3}{3\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\left(\frac{x^{2}-2x-2x+4+3}{3\left(x-2\right)\left(x+2\right)}+\frac{x-6}{6-3x}\right)\times \frac{9x^{2}-x}{32}
Do the multiplications in \left(x-2\right)\left(x-2\right)+3.
\left(\frac{x^{2}-4x+7}{3\left(x-2\right)\left(x+2\right)}+\frac{x-6}{6-3x}\right)\times \frac{9x^{2}-x}{32}
Combine like terms in x^{2}-2x-2x+4+3.
\left(\frac{x^{2}-4x+7}{3\left(x-2\right)\left(x+2\right)}+\frac{x-6}{3\left(-x+2\right)}\right)\times \frac{9x^{2}-x}{32}
Factor 6-3x.
\left(\frac{x^{2}-4x+7}{3\left(x-2\right)\left(x+2\right)}+\frac{\left(x-6\right)\left(-1\right)\left(x+2\right)}{3\left(x-2\right)\left(x+2\right)}\right)\times \frac{9x^{2}-x}{32}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(x-2\right)\left(x+2\right) and 3\left(-x+2\right) is 3\left(x-2\right)\left(x+2\right). Multiply \frac{x-6}{3\left(-x+2\right)} times \frac{-\left(x+2\right)}{-\left(x+2\right)}.
\frac{x^{2}-4x+7+\left(x-6\right)\left(-1\right)\left(x+2\right)}{3\left(x-2\right)\left(x+2\right)}\times \frac{9x^{2}-x}{32}
Since \frac{x^{2}-4x+7}{3\left(x-2\right)\left(x+2\right)} and \frac{\left(x-6\right)\left(-1\right)\left(x+2\right)}{3\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-4x+7-x^{2}-2x+6x+12}{3\left(x-2\right)\left(x+2\right)}\times \frac{9x^{2}-x}{32}
Do the multiplications in x^{2}-4x+7+\left(x-6\right)\left(-1\right)\left(x+2\right).
\frac{19}{3\left(x-2\right)\left(x+2\right)}\times \frac{9x^{2}-x}{32}
Combine like terms in x^{2}-4x+7-x^{2}-2x+6x+12.
\frac{19\left(9x^{2}-x\right)}{3\left(x-2\right)\left(x+2\right)\times 32}
Multiply \frac{19}{3\left(x-2\right)\left(x+2\right)} times \frac{9x^{2}-x}{32} by multiplying numerator times numerator and denominator times denominator.
\frac{19\left(9x^{2}-x\right)}{96\left(x-2\right)\left(x+2\right)}
Multiply 3 and 32 to get 96.
\frac{171x^{2}-19x}{96\left(x-2\right)\left(x+2\right)}
Use the distributive property to multiply 19 by 9x^{2}-x.
\frac{171x^{2}-19x}{\left(96x-192\right)\left(x+2\right)}
Use the distributive property to multiply 96 by x-2.
\frac{171x^{2}-19x}{96x^{2}-384}
Use the distributive property to multiply 96x-192 by x+2 and combine like terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}