Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{x}{x\left(x+1\right)}-\frac{1}{x-x^{2}}\right)\times \frac{x-x^{3}}{2}
Factor the expressions that are not already factored in \frac{x}{x+x^{2}}.
\left(\frac{1}{x+1}-\frac{1}{x-x^{2}}\right)\times \frac{x-x^{3}}{2}
Cancel out x in both numerator and denominator.
\left(\frac{1}{x+1}-\frac{1}{x\left(-x+1\right)}\right)\times \frac{x-x^{3}}{2}
Factor x-x^{2}.
\left(\frac{x\left(-x+1\right)}{x\left(x+1\right)\left(-x+1\right)}-\frac{x+1}{x\left(x+1\right)\left(-x+1\right)}\right)\times \frac{x-x^{3}}{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and x\left(-x+1\right) is x\left(x+1\right)\left(-x+1\right). Multiply \frac{1}{x+1} times \frac{x\left(-x+1\right)}{x\left(-x+1\right)}. Multiply \frac{1}{x\left(-x+1\right)} times \frac{x+1}{x+1}.
\frac{x\left(-x+1\right)-\left(x+1\right)}{x\left(x+1\right)\left(-x+1\right)}\times \frac{x-x^{3}}{2}
Since \frac{x\left(-x+1\right)}{x\left(x+1\right)\left(-x+1\right)} and \frac{x+1}{x\left(x+1\right)\left(-x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{2}+x-x-1}{x\left(x+1\right)\left(-x+1\right)}\times \frac{x-x^{3}}{2}
Do the multiplications in x\left(-x+1\right)-\left(x+1\right).
\frac{-x^{2}-1}{x\left(x+1\right)\left(-x+1\right)}\times \frac{x-x^{3}}{2}
Combine like terms in -x^{2}+x-x-1.
\frac{\left(-x^{2}-1\right)\left(x-x^{3}\right)}{x\left(x+1\right)\left(-x+1\right)\times 2}
Multiply \frac{-x^{2}-1}{x\left(x+1\right)\left(-x+1\right)} times \frac{x-x^{3}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{x\left(x-1\right)\left(-x-1\right)\left(-x^{2}-1\right)}{2x\left(x+1\right)\left(-x+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)x\left(x+1\right)\left(-x+1\right)\left(-x^{2}-1\right)}{2x\left(x+1\right)\left(-x+1\right)}
Extract the negative sign in -1-x. Extract the negative sign in -1+x.
\frac{-\left(-1\right)\left(-x^{2}-1\right)}{2}
Cancel out x\left(x+1\right)\left(-x+1\right) in both numerator and denominator.
\frac{-x^{2}-1}{2}
Expand the expression.
\left(\frac{x}{x\left(x+1\right)}-\frac{1}{x-x^{2}}\right)\times \frac{x-x^{3}}{2}
Factor the expressions that are not already factored in \frac{x}{x+x^{2}}.
\left(\frac{1}{x+1}-\frac{1}{x-x^{2}}\right)\times \frac{x-x^{3}}{2}
Cancel out x in both numerator and denominator.
\left(\frac{1}{x+1}-\frac{1}{x\left(-x+1\right)}\right)\times \frac{x-x^{3}}{2}
Factor x-x^{2}.
\left(\frac{x\left(-x+1\right)}{x\left(x+1\right)\left(-x+1\right)}-\frac{x+1}{x\left(x+1\right)\left(-x+1\right)}\right)\times \frac{x-x^{3}}{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and x\left(-x+1\right) is x\left(x+1\right)\left(-x+1\right). Multiply \frac{1}{x+1} times \frac{x\left(-x+1\right)}{x\left(-x+1\right)}. Multiply \frac{1}{x\left(-x+1\right)} times \frac{x+1}{x+1}.
\frac{x\left(-x+1\right)-\left(x+1\right)}{x\left(x+1\right)\left(-x+1\right)}\times \frac{x-x^{3}}{2}
Since \frac{x\left(-x+1\right)}{x\left(x+1\right)\left(-x+1\right)} and \frac{x+1}{x\left(x+1\right)\left(-x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{2}+x-x-1}{x\left(x+1\right)\left(-x+1\right)}\times \frac{x-x^{3}}{2}
Do the multiplications in x\left(-x+1\right)-\left(x+1\right).
\frac{-x^{2}-1}{x\left(x+1\right)\left(-x+1\right)}\times \frac{x-x^{3}}{2}
Combine like terms in -x^{2}+x-x-1.
\frac{\left(-x^{2}-1\right)\left(x-x^{3}\right)}{x\left(x+1\right)\left(-x+1\right)\times 2}
Multiply \frac{-x^{2}-1}{x\left(x+1\right)\left(-x+1\right)} times \frac{x-x^{3}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{x\left(x-1\right)\left(-x-1\right)\left(-x^{2}-1\right)}{2x\left(x+1\right)\left(-x+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)x\left(x+1\right)\left(-x+1\right)\left(-x^{2}-1\right)}{2x\left(x+1\right)\left(-x+1\right)}
Extract the negative sign in -1-x. Extract the negative sign in -1+x.
\frac{-\left(-1\right)\left(-x^{2}-1\right)}{2}
Cancel out x\left(x+1\right)\left(-x+1\right) in both numerator and denominator.
\frac{-x^{2}-1}{2}
Expand the expression.