Evaluate
\frac{-x^{2}-1}{2}
Expand
\frac{-x^{2}-1}{2}
Graph
Share
Copied to clipboard
\left(\frac{x}{x\left(x+1\right)}-\frac{1}{x-x^{2}}\right)\times \frac{x-x^{3}}{2}
Factor the expressions that are not already factored in \frac{x}{x+x^{2}}.
\left(\frac{1}{x+1}-\frac{1}{x-x^{2}}\right)\times \frac{x-x^{3}}{2}
Cancel out x in both numerator and denominator.
\left(\frac{1}{x+1}-\frac{1}{x\left(-x+1\right)}\right)\times \frac{x-x^{3}}{2}
Factor x-x^{2}.
\left(\frac{x\left(-x+1\right)}{x\left(x+1\right)\left(-x+1\right)}-\frac{x+1}{x\left(x+1\right)\left(-x+1\right)}\right)\times \frac{x-x^{3}}{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and x\left(-x+1\right) is x\left(x+1\right)\left(-x+1\right). Multiply \frac{1}{x+1} times \frac{x\left(-x+1\right)}{x\left(-x+1\right)}. Multiply \frac{1}{x\left(-x+1\right)} times \frac{x+1}{x+1}.
\frac{x\left(-x+1\right)-\left(x+1\right)}{x\left(x+1\right)\left(-x+1\right)}\times \frac{x-x^{3}}{2}
Since \frac{x\left(-x+1\right)}{x\left(x+1\right)\left(-x+1\right)} and \frac{x+1}{x\left(x+1\right)\left(-x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{2}+x-x-1}{x\left(x+1\right)\left(-x+1\right)}\times \frac{x-x^{3}}{2}
Do the multiplications in x\left(-x+1\right)-\left(x+1\right).
\frac{-x^{2}-1}{x\left(x+1\right)\left(-x+1\right)}\times \frac{x-x^{3}}{2}
Combine like terms in -x^{2}+x-x-1.
\frac{\left(-x^{2}-1\right)\left(x-x^{3}\right)}{x\left(x+1\right)\left(-x+1\right)\times 2}
Multiply \frac{-x^{2}-1}{x\left(x+1\right)\left(-x+1\right)} times \frac{x-x^{3}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{x\left(x-1\right)\left(-x-1\right)\left(-x^{2}-1\right)}{2x\left(x+1\right)\left(-x+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)x\left(x+1\right)\left(-x+1\right)\left(-x^{2}-1\right)}{2x\left(x+1\right)\left(-x+1\right)}
Extract the negative sign in -1-x. Extract the negative sign in -1+x.
\frac{-\left(-1\right)\left(-x^{2}-1\right)}{2}
Cancel out x\left(x+1\right)\left(-x+1\right) in both numerator and denominator.
\frac{-x^{2}-1}{2}
Expand the expression.
\left(\frac{x}{x\left(x+1\right)}-\frac{1}{x-x^{2}}\right)\times \frac{x-x^{3}}{2}
Factor the expressions that are not already factored in \frac{x}{x+x^{2}}.
\left(\frac{1}{x+1}-\frac{1}{x-x^{2}}\right)\times \frac{x-x^{3}}{2}
Cancel out x in both numerator and denominator.
\left(\frac{1}{x+1}-\frac{1}{x\left(-x+1\right)}\right)\times \frac{x-x^{3}}{2}
Factor x-x^{2}.
\left(\frac{x\left(-x+1\right)}{x\left(x+1\right)\left(-x+1\right)}-\frac{x+1}{x\left(x+1\right)\left(-x+1\right)}\right)\times \frac{x-x^{3}}{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and x\left(-x+1\right) is x\left(x+1\right)\left(-x+1\right). Multiply \frac{1}{x+1} times \frac{x\left(-x+1\right)}{x\left(-x+1\right)}. Multiply \frac{1}{x\left(-x+1\right)} times \frac{x+1}{x+1}.
\frac{x\left(-x+1\right)-\left(x+1\right)}{x\left(x+1\right)\left(-x+1\right)}\times \frac{x-x^{3}}{2}
Since \frac{x\left(-x+1\right)}{x\left(x+1\right)\left(-x+1\right)} and \frac{x+1}{x\left(x+1\right)\left(-x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{2}+x-x-1}{x\left(x+1\right)\left(-x+1\right)}\times \frac{x-x^{3}}{2}
Do the multiplications in x\left(-x+1\right)-\left(x+1\right).
\frac{-x^{2}-1}{x\left(x+1\right)\left(-x+1\right)}\times \frac{x-x^{3}}{2}
Combine like terms in -x^{2}+x-x-1.
\frac{\left(-x^{2}-1\right)\left(x-x^{3}\right)}{x\left(x+1\right)\left(-x+1\right)\times 2}
Multiply \frac{-x^{2}-1}{x\left(x+1\right)\left(-x+1\right)} times \frac{x-x^{3}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{x\left(x-1\right)\left(-x-1\right)\left(-x^{2}-1\right)}{2x\left(x+1\right)\left(-x+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)x\left(x+1\right)\left(-x+1\right)\left(-x^{2}-1\right)}{2x\left(x+1\right)\left(-x+1\right)}
Extract the negative sign in -1-x. Extract the negative sign in -1+x.
\frac{-\left(-1\right)\left(-x^{2}-1\right)}{2}
Cancel out x\left(x+1\right)\left(-x+1\right) in both numerator and denominator.
\frac{-x^{2}-1}{2}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}