Evaluate
\frac{209x^{2}}{36}
Expand
\frac{209x^{2}}{36}
Graph
Share
Copied to clipboard
\left(\frac{3\times 5x}{6}+\frac{2\times 2x}{6}\right)\left(\frac{5x}{2}-\frac{2x}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{5x}{2} times \frac{3}{3}. Multiply \frac{2x}{3} times \frac{2}{2}.
\frac{3\times 5x+2\times 2x}{6}\left(\frac{5x}{2}-\frac{2x}{3}\right)
Since \frac{3\times 5x}{6} and \frac{2\times 2x}{6} have the same denominator, add them by adding their numerators.
\frac{15x+4x}{6}\left(\frac{5x}{2}-\frac{2x}{3}\right)
Do the multiplications in 3\times 5x+2\times 2x.
\frac{19x}{6}\left(\frac{5x}{2}-\frac{2x}{3}\right)
Combine like terms in 15x+4x.
\frac{19x}{6}\left(\frac{3\times 5x}{6}-\frac{2\times 2x}{6}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{5x}{2} times \frac{3}{3}. Multiply \frac{2x}{3} times \frac{2}{2}.
\frac{19x}{6}\times \frac{3\times 5x-2\times 2x}{6}
Since \frac{3\times 5x}{6} and \frac{2\times 2x}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{19x}{6}\times \frac{15x-4x}{6}
Do the multiplications in 3\times 5x-2\times 2x.
\frac{19x}{6}\times \frac{11x}{6}
Combine like terms in 15x-4x.
\frac{19x\times 11x}{6\times 6}
Multiply \frac{19x}{6} times \frac{11x}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{19x^{2}\times 11}{6\times 6}
Multiply x and x to get x^{2}.
\frac{209x^{2}}{6\times 6}
Multiply 19 and 11 to get 209.
\frac{209x^{2}}{36}
Multiply 6 and 6 to get 36.
\left(\frac{3\times 5x}{6}+\frac{2\times 2x}{6}\right)\left(\frac{5x}{2}-\frac{2x}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{5x}{2} times \frac{3}{3}. Multiply \frac{2x}{3} times \frac{2}{2}.
\frac{3\times 5x+2\times 2x}{6}\left(\frac{5x}{2}-\frac{2x}{3}\right)
Since \frac{3\times 5x}{6} and \frac{2\times 2x}{6} have the same denominator, add them by adding their numerators.
\frac{15x+4x}{6}\left(\frac{5x}{2}-\frac{2x}{3}\right)
Do the multiplications in 3\times 5x+2\times 2x.
\frac{19x}{6}\left(\frac{5x}{2}-\frac{2x}{3}\right)
Combine like terms in 15x+4x.
\frac{19x}{6}\left(\frac{3\times 5x}{6}-\frac{2\times 2x}{6}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{5x}{2} times \frac{3}{3}. Multiply \frac{2x}{3} times \frac{2}{2}.
\frac{19x}{6}\times \frac{3\times 5x-2\times 2x}{6}
Since \frac{3\times 5x}{6} and \frac{2\times 2x}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{19x}{6}\times \frac{15x-4x}{6}
Do the multiplications in 3\times 5x-2\times 2x.
\frac{19x}{6}\times \frac{11x}{6}
Combine like terms in 15x-4x.
\frac{19x\times 11x}{6\times 6}
Multiply \frac{19x}{6} times \frac{11x}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{19x^{2}\times 11}{6\times 6}
Multiply x and x to get x^{2}.
\frac{209x^{2}}{6\times 6}
Multiply 19 and 11 to get 209.
\frac{209x^{2}}{36}
Multiply 6 and 6 to get 36.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}