Evaluate
-\frac{14\sqrt{3}}{3}+\frac{17}{2}\approx 0.417096231
Factor
\frac{51 - 28 \sqrt{3}}{6} = 0.4170962313452395
Share
Copied to clipboard
\frac{5}{2}\sqrt{2}\times \frac{1}{2}\sqrt{2}+\frac{5}{2}\sqrt{2}\left(-\frac{1}{3}\right)\sqrt{6}-3\sqrt{6}\times \frac{1}{2}\sqrt{2}-3\sqrt{6}\left(-\frac{1}{3}\right)\sqrt{6}
Apply the distributive property by multiplying each term of \frac{5}{2}\sqrt{2}-3\sqrt{6} by each term of \frac{1}{2}\sqrt{2}-\frac{1}{3}\sqrt{6}.
\frac{5}{2}\times 2\times \frac{1}{2}+\frac{5}{2}\sqrt{2}\left(-\frac{1}{3}\right)\sqrt{6}-3\sqrt{6}\times \frac{1}{2}\sqrt{2}-3\sqrt{6}\left(-\frac{1}{3}\right)\sqrt{6}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{5}{2}\times 2\times \frac{1}{2}+\frac{5}{2}\sqrt{2}\left(-\frac{1}{3}\right)\sqrt{6}-3\sqrt{6}\times \frac{1}{2}\sqrt{2}-3\times 6\left(-\frac{1}{3}\right)
Multiply \sqrt{6} and \sqrt{6} to get 6.
5\times \frac{1}{2}+\frac{5}{2}\sqrt{2}\left(-\frac{1}{3}\right)\sqrt{6}-3\sqrt{6}\times \frac{1}{2}\sqrt{2}-3\times 6\left(-\frac{1}{3}\right)
Cancel out 2 and 2.
\frac{5}{2}+\frac{5}{2}\sqrt{2}\left(-\frac{1}{3}\right)\sqrt{6}-3\sqrt{6}\times \frac{1}{2}\sqrt{2}-3\times 6\left(-\frac{1}{3}\right)
Multiply 5 and \frac{1}{2} to get \frac{5}{2}.
\frac{5}{2}+\frac{5}{2}\sqrt{2}\left(-\frac{1}{3}\right)\sqrt{2}\sqrt{3}-3\sqrt{6}\times \frac{1}{2}\sqrt{2}-3\times 6\left(-\frac{1}{3}\right)
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{5}{2}+\frac{5}{2}\times 2\left(-\frac{1}{3}\right)\sqrt{3}-3\sqrt{6}\times \frac{1}{2}\sqrt{2}-3\times 6\left(-\frac{1}{3}\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{5}{2}+5\left(-\frac{1}{3}\right)\sqrt{3}-3\sqrt{6}\times \frac{1}{2}\sqrt{2}-3\times 6\left(-\frac{1}{3}\right)
Cancel out 2 and 2.
\frac{5}{2}+\frac{5\left(-1\right)}{3}\sqrt{3}-3\sqrt{6}\times \frac{1}{2}\sqrt{2}-3\times 6\left(-\frac{1}{3}\right)
Express 5\left(-\frac{1}{3}\right) as a single fraction.
\frac{5}{2}+\frac{-5}{3}\sqrt{3}-3\sqrt{6}\times \frac{1}{2}\sqrt{2}-3\times 6\left(-\frac{1}{3}\right)
Multiply 5 and -1 to get -5.
\frac{5}{2}-\frac{5}{3}\sqrt{3}-3\sqrt{6}\times \frac{1}{2}\sqrt{2}-3\times 6\left(-\frac{1}{3}\right)
Fraction \frac{-5}{3} can be rewritten as -\frac{5}{3} by extracting the negative sign.
\frac{5}{2}-\frac{5}{3}\sqrt{3}-3\sqrt{2}\sqrt{3}\times \frac{1}{2}\sqrt{2}-3\times 6\left(-\frac{1}{3}\right)
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{5}{2}-\frac{5}{3}\sqrt{3}-3\times 2\times \frac{1}{2}\sqrt{3}-3\times 6\left(-\frac{1}{3}\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{5}{2}-\frac{5}{3}\sqrt{3}-6\times \frac{1}{2}\sqrt{3}-3\times 6\left(-\frac{1}{3}\right)
Multiply -3 and 2 to get -6.
\frac{5}{2}-\frac{5}{3}\sqrt{3}+\frac{-6}{2}\sqrt{3}-3\times 6\left(-\frac{1}{3}\right)
Multiply -6 and \frac{1}{2} to get \frac{-6}{2}.
\frac{5}{2}-\frac{5}{3}\sqrt{3}-3\sqrt{3}-3\times 6\left(-\frac{1}{3}\right)
Divide -6 by 2 to get -3.
\frac{5}{2}-\frac{14}{3}\sqrt{3}-3\times 6\left(-\frac{1}{3}\right)
Combine -\frac{5}{3}\sqrt{3} and -3\sqrt{3} to get -\frac{14}{3}\sqrt{3}.
\frac{5}{2}-\frac{14}{3}\sqrt{3}-18\left(-\frac{1}{3}\right)
Multiply -3 and 6 to get -18.
\frac{5}{2}-\frac{14}{3}\sqrt{3}+\frac{-18\left(-1\right)}{3}
Express -18\left(-\frac{1}{3}\right) as a single fraction.
\frac{5}{2}-\frac{14}{3}\sqrt{3}+\frac{18}{3}
Multiply -18 and -1 to get 18.
\frac{5}{2}-\frac{14}{3}\sqrt{3}+6
Divide 18 by 3 to get 6.
\frac{5}{2}-\frac{14}{3}\sqrt{3}+\frac{12}{2}
Convert 6 to fraction \frac{12}{2}.
\frac{5+12}{2}-\frac{14}{3}\sqrt{3}
Since \frac{5}{2} and \frac{12}{2} have the same denominator, add them by adding their numerators.
\frac{17}{2}-\frac{14}{3}\sqrt{3}
Add 5 and 12 to get 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}