Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{5}{2}\sqrt{2}\times \frac{1}{2}\sqrt{2}+\frac{5}{2}\sqrt{2}\left(-\frac{1}{3}\right)\sqrt{6}-3\sqrt{6}\times \frac{1}{2}\sqrt{2}-3\sqrt{6}\left(-\frac{1}{3}\right)\sqrt{6}
Apply the distributive property by multiplying each term of \frac{5}{2}\sqrt{2}-3\sqrt{6} by each term of \frac{1}{2}\sqrt{2}-\frac{1}{3}\sqrt{6}.
\frac{5}{2}\times 2\times \frac{1}{2}+\frac{5}{2}\sqrt{2}\left(-\frac{1}{3}\right)\sqrt{6}-3\sqrt{6}\times \frac{1}{2}\sqrt{2}-3\sqrt{6}\left(-\frac{1}{3}\right)\sqrt{6}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{5}{2}\times 2\times \frac{1}{2}+\frac{5}{2}\sqrt{2}\left(-\frac{1}{3}\right)\sqrt{6}-3\sqrt{6}\times \frac{1}{2}\sqrt{2}-3\times 6\left(-\frac{1}{3}\right)
Multiply \sqrt{6} and \sqrt{6} to get 6.
5\times \frac{1}{2}+\frac{5}{2}\sqrt{2}\left(-\frac{1}{3}\right)\sqrt{6}-3\sqrt{6}\times \frac{1}{2}\sqrt{2}-3\times 6\left(-\frac{1}{3}\right)
Cancel out 2 and 2.
\frac{5}{2}+\frac{5}{2}\sqrt{2}\left(-\frac{1}{3}\right)\sqrt{6}-3\sqrt{6}\times \frac{1}{2}\sqrt{2}-3\times 6\left(-\frac{1}{3}\right)
Multiply 5 and \frac{1}{2} to get \frac{5}{2}.
\frac{5}{2}+\frac{5}{2}\sqrt{2}\left(-\frac{1}{3}\right)\sqrt{2}\sqrt{3}-3\sqrt{6}\times \frac{1}{2}\sqrt{2}-3\times 6\left(-\frac{1}{3}\right)
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{5}{2}+\frac{5}{2}\times 2\left(-\frac{1}{3}\right)\sqrt{3}-3\sqrt{6}\times \frac{1}{2}\sqrt{2}-3\times 6\left(-\frac{1}{3}\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{5}{2}+5\left(-\frac{1}{3}\right)\sqrt{3}-3\sqrt{6}\times \frac{1}{2}\sqrt{2}-3\times 6\left(-\frac{1}{3}\right)
Cancel out 2 and 2.
\frac{5}{2}+\frac{5\left(-1\right)}{3}\sqrt{3}-3\sqrt{6}\times \frac{1}{2}\sqrt{2}-3\times 6\left(-\frac{1}{3}\right)
Express 5\left(-\frac{1}{3}\right) as a single fraction.
\frac{5}{2}+\frac{-5}{3}\sqrt{3}-3\sqrt{6}\times \frac{1}{2}\sqrt{2}-3\times 6\left(-\frac{1}{3}\right)
Multiply 5 and -1 to get -5.
\frac{5}{2}-\frac{5}{3}\sqrt{3}-3\sqrt{6}\times \frac{1}{2}\sqrt{2}-3\times 6\left(-\frac{1}{3}\right)
Fraction \frac{-5}{3} can be rewritten as -\frac{5}{3} by extracting the negative sign.
\frac{5}{2}-\frac{5}{3}\sqrt{3}-3\sqrt{2}\sqrt{3}\times \frac{1}{2}\sqrt{2}-3\times 6\left(-\frac{1}{3}\right)
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{5}{2}-\frac{5}{3}\sqrt{3}-3\times 2\times \frac{1}{2}\sqrt{3}-3\times 6\left(-\frac{1}{3}\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{5}{2}-\frac{5}{3}\sqrt{3}-6\times \frac{1}{2}\sqrt{3}-3\times 6\left(-\frac{1}{3}\right)
Multiply -3 and 2 to get -6.
\frac{5}{2}-\frac{5}{3}\sqrt{3}+\frac{-6}{2}\sqrt{3}-3\times 6\left(-\frac{1}{3}\right)
Multiply -6 and \frac{1}{2} to get \frac{-6}{2}.
\frac{5}{2}-\frac{5}{3}\sqrt{3}-3\sqrt{3}-3\times 6\left(-\frac{1}{3}\right)
Divide -6 by 2 to get -3.
\frac{5}{2}-\frac{14}{3}\sqrt{3}-3\times 6\left(-\frac{1}{3}\right)
Combine -\frac{5}{3}\sqrt{3} and -3\sqrt{3} to get -\frac{14}{3}\sqrt{3}.
\frac{5}{2}-\frac{14}{3}\sqrt{3}-18\left(-\frac{1}{3}\right)
Multiply -3 and 6 to get -18.
\frac{5}{2}-\frac{14}{3}\sqrt{3}+\frac{-18\left(-1\right)}{3}
Express -18\left(-\frac{1}{3}\right) as a single fraction.
\frac{5}{2}-\frac{14}{3}\sqrt{3}+\frac{18}{3}
Multiply -18 and -1 to get 18.
\frac{5}{2}-\frac{14}{3}\sqrt{3}+6
Divide 18 by 3 to get 6.
\frac{5}{2}-\frac{14}{3}\sqrt{3}+\frac{12}{2}
Convert 6 to fraction \frac{12}{2}.
\frac{5+12}{2}-\frac{14}{3}\sqrt{3}
Since \frac{5}{2} and \frac{12}{2} have the same denominator, add them by adding their numerators.
\frac{17}{2}-\frac{14}{3}\sqrt{3}
Add 5 and 12 to get 17.