Evaluate
\frac{16m^{8}}{625}-\frac{256n^{8}}{81}
Expand
\frac{16m^{8}}{625}-\frac{256n^{8}}{81}
Share
Copied to clipboard
\left(\frac{9\times 4m^{4}}{225}-\frac{25\times 16n^{4}}{225}\right)\left(\frac{4m^{4}}{25}+\frac{16n^{4}}{9}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 25 and 9 is 225. Multiply \frac{4m^{4}}{25} times \frac{9}{9}. Multiply \frac{16n^{4}}{9} times \frac{25}{25}.
\frac{9\times 4m^{4}-25\times 16n^{4}}{225}\left(\frac{4m^{4}}{25}+\frac{16n^{4}}{9}\right)
Since \frac{9\times 4m^{4}}{225} and \frac{25\times 16n^{4}}{225} have the same denominator, subtract them by subtracting their numerators.
\frac{36m^{4}-400n^{4}}{225}\left(\frac{4m^{4}}{25}+\frac{16n^{4}}{9}\right)
Do the multiplications in 9\times 4m^{4}-25\times 16n^{4}.
\frac{36m^{4}-400n^{4}}{225}\left(\frac{9\times 4m^{4}}{225}+\frac{25\times 16n^{4}}{225}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 25 and 9 is 225. Multiply \frac{4m^{4}}{25} times \frac{9}{9}. Multiply \frac{16n^{4}}{9} times \frac{25}{25}.
\frac{36m^{4}-400n^{4}}{225}\times \frac{9\times 4m^{4}+25\times 16n^{4}}{225}
Since \frac{9\times 4m^{4}}{225} and \frac{25\times 16n^{4}}{225} have the same denominator, add them by adding their numerators.
\frac{36m^{4}-400n^{4}}{225}\times \frac{36m^{4}+400n^{4}}{225}
Do the multiplications in 9\times 4m^{4}+25\times 16n^{4}.
\frac{\left(36m^{4}-400n^{4}\right)\left(36m^{4}+400n^{4}\right)}{225\times 225}
Multiply \frac{36m^{4}-400n^{4}}{225} times \frac{36m^{4}+400n^{4}}{225} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(36m^{4}-400n^{4}\right)\left(36m^{4}+400n^{4}\right)}{50625}
Multiply 225 and 225 to get 50625.
\frac{\left(36m^{4}\right)^{2}-\left(400n^{4}\right)^{2}}{50625}
Consider \left(36m^{4}-400n^{4}\right)\left(36m^{4}+400n^{4}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{36^{2}\left(m^{4}\right)^{2}-\left(400n^{4}\right)^{2}}{50625}
Expand \left(36m^{4}\right)^{2}.
\frac{36^{2}m^{8}-\left(400n^{4}\right)^{2}}{50625}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
\frac{1296m^{8}-\left(400n^{4}\right)^{2}}{50625}
Calculate 36 to the power of 2 and get 1296.
\frac{1296m^{8}-400^{2}\left(n^{4}\right)^{2}}{50625}
Expand \left(400n^{4}\right)^{2}.
\frac{1296m^{8}-400^{2}n^{8}}{50625}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
\frac{1296m^{8}-160000n^{8}}{50625}
Calculate 400 to the power of 2 and get 160000.
\left(\frac{9\times 4m^{4}}{225}-\frac{25\times 16n^{4}}{225}\right)\left(\frac{4m^{4}}{25}+\frac{16n^{4}}{9}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 25 and 9 is 225. Multiply \frac{4m^{4}}{25} times \frac{9}{9}. Multiply \frac{16n^{4}}{9} times \frac{25}{25}.
\frac{9\times 4m^{4}-25\times 16n^{4}}{225}\left(\frac{4m^{4}}{25}+\frac{16n^{4}}{9}\right)
Since \frac{9\times 4m^{4}}{225} and \frac{25\times 16n^{4}}{225} have the same denominator, subtract them by subtracting their numerators.
\frac{36m^{4}-400n^{4}}{225}\left(\frac{4m^{4}}{25}+\frac{16n^{4}}{9}\right)
Do the multiplications in 9\times 4m^{4}-25\times 16n^{4}.
\frac{36m^{4}-400n^{4}}{225}\left(\frac{9\times 4m^{4}}{225}+\frac{25\times 16n^{4}}{225}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 25 and 9 is 225. Multiply \frac{4m^{4}}{25} times \frac{9}{9}. Multiply \frac{16n^{4}}{9} times \frac{25}{25}.
\frac{36m^{4}-400n^{4}}{225}\times \frac{9\times 4m^{4}+25\times 16n^{4}}{225}
Since \frac{9\times 4m^{4}}{225} and \frac{25\times 16n^{4}}{225} have the same denominator, add them by adding their numerators.
\frac{36m^{4}-400n^{4}}{225}\times \frac{36m^{4}+400n^{4}}{225}
Do the multiplications in 9\times 4m^{4}+25\times 16n^{4}.
\frac{\left(36m^{4}-400n^{4}\right)\left(36m^{4}+400n^{4}\right)}{225\times 225}
Multiply \frac{36m^{4}-400n^{4}}{225} times \frac{36m^{4}+400n^{4}}{225} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(36m^{4}-400n^{4}\right)\left(36m^{4}+400n^{4}\right)}{50625}
Multiply 225 and 225 to get 50625.
\frac{\left(36m^{4}\right)^{2}-\left(400n^{4}\right)^{2}}{50625}
Consider \left(36m^{4}-400n^{4}\right)\left(36m^{4}+400n^{4}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{36^{2}\left(m^{4}\right)^{2}-\left(400n^{4}\right)^{2}}{50625}
Expand \left(36m^{4}\right)^{2}.
\frac{36^{2}m^{8}-\left(400n^{4}\right)^{2}}{50625}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
\frac{1296m^{8}-\left(400n^{4}\right)^{2}}{50625}
Calculate 36 to the power of 2 and get 1296.
\frac{1296m^{8}-400^{2}\left(n^{4}\right)^{2}}{50625}
Expand \left(400n^{4}\right)^{2}.
\frac{1296m^{8}-400^{2}n^{8}}{50625}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
\frac{1296m^{8}-160000n^{8}}{50625}
Calculate 400 to the power of 2 and get 160000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}