Evaluate
3+y+3x-xy
Expand
3+y+3x-xy
Share
Copied to clipboard
\left(\frac{3x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{yx\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\right)\times \frac{x^{2}-1}{x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-1 and x+1 is \left(x-1\right)\left(x+1\right). Multiply \frac{3x}{x-1} times \frac{x+1}{x+1}. Multiply \frac{yx}{x+1} times \frac{x-1}{x-1}.
\frac{3x\left(x+1\right)-yx\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\times \frac{x^{2}-1}{x}
Since \frac{3x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} and \frac{yx\left(x-1\right)}{\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}+3x-yx^{2}+yx}{\left(x-1\right)\left(x+1\right)}\times \frac{x^{2}-1}{x}
Do the multiplications in 3x\left(x+1\right)-yx\left(x-1\right).
\frac{\left(3x^{2}+3x-yx^{2}+yx\right)\left(x^{2}-1\right)}{\left(x-1\right)\left(x+1\right)x}
Multiply \frac{3x^{2}+3x-yx^{2}+yx}{\left(x-1\right)\left(x+1\right)} times \frac{x^{2}-1}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{x\left(x-1\right)\left(x+1\right)\left(-xy+3x+y+3\right)}{x\left(x-1\right)\left(x+1\right)}
Factor the expressions that are not already factored.
-xy+3x+y+3
Cancel out x\left(x-1\right)\left(x+1\right) in both numerator and denominator.
\left(\frac{3x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{yx\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\right)\times \frac{x^{2}-1}{x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-1 and x+1 is \left(x-1\right)\left(x+1\right). Multiply \frac{3x}{x-1} times \frac{x+1}{x+1}. Multiply \frac{yx}{x+1} times \frac{x-1}{x-1}.
\frac{3x\left(x+1\right)-yx\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\times \frac{x^{2}-1}{x}
Since \frac{3x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} and \frac{yx\left(x-1\right)}{\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}+3x-yx^{2}+yx}{\left(x-1\right)\left(x+1\right)}\times \frac{x^{2}-1}{x}
Do the multiplications in 3x\left(x+1\right)-yx\left(x-1\right).
\frac{\left(3x^{2}+3x-yx^{2}+yx\right)\left(x^{2}-1\right)}{\left(x-1\right)\left(x+1\right)x}
Multiply \frac{3x^{2}+3x-yx^{2}+yx}{\left(x-1\right)\left(x+1\right)} times \frac{x^{2}-1}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{x\left(x-1\right)\left(x+1\right)\left(-xy+3x+y+3\right)}{x\left(x-1\right)\left(x+1\right)}
Factor the expressions that are not already factored.
-xy+3x+y+3
Cancel out x\left(x-1\right)\left(x+1\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}