Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{3}{a+1}-\frac{a\left(a+1\right)}{a+1}+1\right)\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Divide a+1 by a+1 to get 1.
\left(\frac{3}{a+1}-a+1\right)\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Cancel out a+1 in both numerator and denominator.
\left(\frac{3}{a+1}+\frac{\left(-a+1\right)\left(a+1\right)}{a+1}\right)\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
To add or subtract expressions, expand them to make their denominators the same. Multiply -a+1 times \frac{a+1}{a+1}.
\frac{3+\left(-a+1\right)\left(a+1\right)}{a+1}\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Since \frac{3}{a+1} and \frac{\left(-a+1\right)\left(a+1\right)}{a+1} have the same denominator, add them by adding their numerators.
\frac{3-a^{2}-a+a+1}{a+1}\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Do the multiplications in 3+\left(-a+1\right)\left(a+1\right).
\frac{4-a^{2}}{a+1}\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Combine like terms in 3-a^{2}-a+a+1.
\frac{\left(4-a^{2}\right)\left(a+1\right)}{\left(a+1\right)\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Multiply \frac{4-a^{2}}{a+1} times \frac{a+1}{\left(a-2\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-a^{2}+4}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Cancel out a+1 in both numerator and denominator.
\frac{-a^{2}+4}{\left(a-2\right)^{2}}+\frac{4\left(a-2\right)}{\left(a-2\right)^{2}}-a
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-2\right)^{2} and a-2 is \left(a-2\right)^{2}. Multiply \frac{4}{a-2} times \frac{a-2}{a-2}.
\frac{-a^{2}+4+4\left(a-2\right)}{\left(a-2\right)^{2}}-a
Since \frac{-a^{2}+4}{\left(a-2\right)^{2}} and \frac{4\left(a-2\right)}{\left(a-2\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-a^{2}+4+4a-8}{\left(a-2\right)^{2}}-a
Do the multiplications in -a^{2}+4+4\left(a-2\right).
\frac{-a^{2}-4+4a}{\left(a-2\right)^{2}}-a
Combine like terms in -a^{2}+4+4a-8.
\frac{\left(a-2\right)\left(-a+2\right)}{\left(a-2\right)^{2}}-a
Factor the expressions that are not already factored in \frac{-a^{2}-4+4a}{\left(a-2\right)^{2}}.
\frac{-a+2}{a-2}-a
Cancel out a-2 in both numerator and denominator.
\frac{-a+2}{a-2}-\frac{a\left(a-2\right)}{a-2}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a-2}{a-2}.
\frac{-a+2-a\left(a-2\right)}{a-2}
Since \frac{-a+2}{a-2} and \frac{a\left(a-2\right)}{a-2} have the same denominator, subtract them by subtracting their numerators.
\frac{-a+2-a^{2}+2a}{a-2}
Do the multiplications in -a+2-a\left(a-2\right).
\frac{a+2-a^{2}}{a-2}
Combine like terms in -a+2-a^{2}+2a.
\frac{\left(a-2\right)\left(-a-1\right)}{a-2}
Factor the expressions that are not already factored in \frac{a+2-a^{2}}{a-2}.
-a-1
Cancel out a-2 in both numerator and denominator.
\left(\frac{3}{a+1}-\frac{a\left(a+1\right)}{a+1}+1\right)\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Divide a+1 by a+1 to get 1.
\left(\frac{3}{a+1}-a+1\right)\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Cancel out a+1 in both numerator and denominator.
\left(\frac{3}{a+1}+\frac{\left(-a+1\right)\left(a+1\right)}{a+1}\right)\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
To add or subtract expressions, expand them to make their denominators the same. Multiply -a+1 times \frac{a+1}{a+1}.
\frac{3+\left(-a+1\right)\left(a+1\right)}{a+1}\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Since \frac{3}{a+1} and \frac{\left(-a+1\right)\left(a+1\right)}{a+1} have the same denominator, add them by adding their numerators.
\frac{3-a^{2}-a+a+1}{a+1}\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Do the multiplications in 3+\left(-a+1\right)\left(a+1\right).
\frac{4-a^{2}}{a+1}\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Combine like terms in 3-a^{2}-a+a+1.
\frac{\left(4-a^{2}\right)\left(a+1\right)}{\left(a+1\right)\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Multiply \frac{4-a^{2}}{a+1} times \frac{a+1}{\left(a-2\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-a^{2}+4}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Cancel out a+1 in both numerator and denominator.
\frac{-a^{2}+4}{\left(a-2\right)^{2}}+\frac{4\left(a-2\right)}{\left(a-2\right)^{2}}-a
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-2\right)^{2} and a-2 is \left(a-2\right)^{2}. Multiply \frac{4}{a-2} times \frac{a-2}{a-2}.
\frac{-a^{2}+4+4\left(a-2\right)}{\left(a-2\right)^{2}}-a
Since \frac{-a^{2}+4}{\left(a-2\right)^{2}} and \frac{4\left(a-2\right)}{\left(a-2\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-a^{2}+4+4a-8}{\left(a-2\right)^{2}}-a
Do the multiplications in -a^{2}+4+4\left(a-2\right).
\frac{-a^{2}-4+4a}{\left(a-2\right)^{2}}-a
Combine like terms in -a^{2}+4+4a-8.
\frac{\left(a-2\right)\left(-a+2\right)}{\left(a-2\right)^{2}}-a
Factor the expressions that are not already factored in \frac{-a^{2}-4+4a}{\left(a-2\right)^{2}}.
\frac{-a+2}{a-2}-a
Cancel out a-2 in both numerator and denominator.
\frac{-a+2}{a-2}-\frac{a\left(a-2\right)}{a-2}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a-2}{a-2}.
\frac{-a+2-a\left(a-2\right)}{a-2}
Since \frac{-a+2}{a-2} and \frac{a\left(a-2\right)}{a-2} have the same denominator, subtract them by subtracting their numerators.
\frac{-a+2-a^{2}+2a}{a-2}
Do the multiplications in -a+2-a\left(a-2\right).
\frac{a+2-a^{2}}{a-2}
Combine like terms in -a+2-a^{2}+2a.
\frac{\left(a-2\right)\left(-a-1\right)}{a-2}
Factor the expressions that are not already factored in \frac{a+2-a^{2}}{a-2}.
-a-1
Cancel out a-2 in both numerator and denominator.