Evaluate
\frac{a+2}{\left(1-a\right)\left(2-a\right)}
Expand
-\frac{a+2}{\left(1-a\right)\left(a-2\right)}
Share
Copied to clipboard
\left(\frac{1}{2-a}+\frac{6a-4-a^{2}}{\left(a-2\right)\left(a^{2}+2a+4\right)}-\frac{2-a}{a^{2}+2a+4}\right)\times \frac{a^{3}+4a^{2}+8a+8}{4-4a+a^{2}-a^{3}}
Factor a^{3}-8.
\left(\frac{-\left(a^{2}+2a+4\right)}{\left(a-2\right)\left(a^{2}+2a+4\right)}+\frac{6a-4-a^{2}}{\left(a-2\right)\left(a^{2}+2a+4\right)}-\frac{2-a}{a^{2}+2a+4}\right)\times \frac{a^{3}+4a^{2}+8a+8}{4-4a+a^{2}-a^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2-a and \left(a-2\right)\left(a^{2}+2a+4\right) is \left(a-2\right)\left(a^{2}+2a+4\right). Multiply \frac{1}{2-a} times \frac{-\left(a^{2}+2a+4\right)}{-\left(a^{2}+2a+4\right)}.
\left(\frac{-\left(a^{2}+2a+4\right)+6a-4-a^{2}}{\left(a-2\right)\left(a^{2}+2a+4\right)}-\frac{2-a}{a^{2}+2a+4}\right)\times \frac{a^{3}+4a^{2}+8a+8}{4-4a+a^{2}-a^{3}}
Since \frac{-\left(a^{2}+2a+4\right)}{\left(a-2\right)\left(a^{2}+2a+4\right)} and \frac{6a-4-a^{2}}{\left(a-2\right)\left(a^{2}+2a+4\right)} have the same denominator, add them by adding their numerators.
\left(\frac{-a^{2}-2a-4+6a-4-a^{2}}{\left(a-2\right)\left(a^{2}+2a+4\right)}-\frac{2-a}{a^{2}+2a+4}\right)\times \frac{a^{3}+4a^{2}+8a+8}{4-4a+a^{2}-a^{3}}
Do the multiplications in -\left(a^{2}+2a+4\right)+6a-4-a^{2}.
\left(\frac{-2a^{2}+4a-8}{\left(a-2\right)\left(a^{2}+2a+4\right)}-\frac{2-a}{a^{2}+2a+4}\right)\times \frac{a^{3}+4a^{2}+8a+8}{4-4a+a^{2}-a^{3}}
Combine like terms in -a^{2}-2a-4+6a-4-a^{2}.
\left(\frac{-2a^{2}+4a-8}{\left(a-2\right)\left(a^{2}+2a+4\right)}-\frac{\left(2-a\right)\left(a-2\right)}{\left(a-2\right)\left(a^{2}+2a+4\right)}\right)\times \frac{a^{3}+4a^{2}+8a+8}{4-4a+a^{2}-a^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-2\right)\left(a^{2}+2a+4\right) and a^{2}+2a+4 is \left(a-2\right)\left(a^{2}+2a+4\right). Multiply \frac{2-a}{a^{2}+2a+4} times \frac{a-2}{a-2}.
\frac{-2a^{2}+4a-8-\left(2-a\right)\left(a-2\right)}{\left(a-2\right)\left(a^{2}+2a+4\right)}\times \frac{a^{3}+4a^{2}+8a+8}{4-4a+a^{2}-a^{3}}
Since \frac{-2a^{2}+4a-8}{\left(a-2\right)\left(a^{2}+2a+4\right)} and \frac{\left(2-a\right)\left(a-2\right)}{\left(a-2\right)\left(a^{2}+2a+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2a^{2}+4a-8-2a+4+a^{2}-2a}{\left(a-2\right)\left(a^{2}+2a+4\right)}\times \frac{a^{3}+4a^{2}+8a+8}{4-4a+a^{2}-a^{3}}
Do the multiplications in -2a^{2}+4a-8-\left(2-a\right)\left(a-2\right).
\frac{-a^{2}-4}{\left(a-2\right)\left(a^{2}+2a+4\right)}\times \frac{a^{3}+4a^{2}+8a+8}{4-4a+a^{2}-a^{3}}
Combine like terms in -2a^{2}+4a-8-2a+4+a^{2}-2a.
\frac{\left(-a^{2}-4\right)\left(a^{3}+4a^{2}+8a+8\right)}{\left(a-2\right)\left(a^{2}+2a+4\right)\left(4-4a+a^{2}-a^{3}\right)}
Multiply \frac{-a^{2}-4}{\left(a-2\right)\left(a^{2}+2a+4\right)} times \frac{a^{3}+4a^{2}+8a+8}{4-4a+a^{2}-a^{3}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a+2\right)\left(-a^{2}-4\right)\left(a^{2}+2a+4\right)}{\left(a-2\right)\left(-a+1\right)\left(a^{2}+4\right)\left(a^{2}+2a+4\right)}
Factor the expressions that are not already factored.
\frac{-\left(a+2\right)\left(a^{2}+4\right)\left(a^{2}+2a+4\right)}{\left(a-2\right)\left(-a+1\right)\left(a^{2}+4\right)\left(a^{2}+2a+4\right)}
Extract the negative sign in -a^{2}-4.
\frac{-\left(a+2\right)}{\left(a-2\right)\left(-a+1\right)}
Cancel out \left(a^{2}+4\right)\left(a^{2}+2a+4\right) in both numerator and denominator.
\frac{-a-2}{-a^{2}+3a-2}
Expand the expression.
\left(\frac{1}{2-a}+\frac{6a-4-a^{2}}{\left(a-2\right)\left(a^{2}+2a+4\right)}-\frac{2-a}{a^{2}+2a+4}\right)\times \frac{a^{3}+4a^{2}+8a+8}{4-4a+a^{2}-a^{3}}
Factor a^{3}-8.
\left(\frac{-\left(a^{2}+2a+4\right)}{\left(a-2\right)\left(a^{2}+2a+4\right)}+\frac{6a-4-a^{2}}{\left(a-2\right)\left(a^{2}+2a+4\right)}-\frac{2-a}{a^{2}+2a+4}\right)\times \frac{a^{3}+4a^{2}+8a+8}{4-4a+a^{2}-a^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2-a and \left(a-2\right)\left(a^{2}+2a+4\right) is \left(a-2\right)\left(a^{2}+2a+4\right). Multiply \frac{1}{2-a} times \frac{-\left(a^{2}+2a+4\right)}{-\left(a^{2}+2a+4\right)}.
\left(\frac{-\left(a^{2}+2a+4\right)+6a-4-a^{2}}{\left(a-2\right)\left(a^{2}+2a+4\right)}-\frac{2-a}{a^{2}+2a+4}\right)\times \frac{a^{3}+4a^{2}+8a+8}{4-4a+a^{2}-a^{3}}
Since \frac{-\left(a^{2}+2a+4\right)}{\left(a-2\right)\left(a^{2}+2a+4\right)} and \frac{6a-4-a^{2}}{\left(a-2\right)\left(a^{2}+2a+4\right)} have the same denominator, add them by adding their numerators.
\left(\frac{-a^{2}-2a-4+6a-4-a^{2}}{\left(a-2\right)\left(a^{2}+2a+4\right)}-\frac{2-a}{a^{2}+2a+4}\right)\times \frac{a^{3}+4a^{2}+8a+8}{4-4a+a^{2}-a^{3}}
Do the multiplications in -\left(a^{2}+2a+4\right)+6a-4-a^{2}.
\left(\frac{-2a^{2}+4a-8}{\left(a-2\right)\left(a^{2}+2a+4\right)}-\frac{2-a}{a^{2}+2a+4}\right)\times \frac{a^{3}+4a^{2}+8a+8}{4-4a+a^{2}-a^{3}}
Combine like terms in -a^{2}-2a-4+6a-4-a^{2}.
\left(\frac{-2a^{2}+4a-8}{\left(a-2\right)\left(a^{2}+2a+4\right)}-\frac{\left(2-a\right)\left(a-2\right)}{\left(a-2\right)\left(a^{2}+2a+4\right)}\right)\times \frac{a^{3}+4a^{2}+8a+8}{4-4a+a^{2}-a^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-2\right)\left(a^{2}+2a+4\right) and a^{2}+2a+4 is \left(a-2\right)\left(a^{2}+2a+4\right). Multiply \frac{2-a}{a^{2}+2a+4} times \frac{a-2}{a-2}.
\frac{-2a^{2}+4a-8-\left(2-a\right)\left(a-2\right)}{\left(a-2\right)\left(a^{2}+2a+4\right)}\times \frac{a^{3}+4a^{2}+8a+8}{4-4a+a^{2}-a^{3}}
Since \frac{-2a^{2}+4a-8}{\left(a-2\right)\left(a^{2}+2a+4\right)} and \frac{\left(2-a\right)\left(a-2\right)}{\left(a-2\right)\left(a^{2}+2a+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2a^{2}+4a-8-2a+4+a^{2}-2a}{\left(a-2\right)\left(a^{2}+2a+4\right)}\times \frac{a^{3}+4a^{2}+8a+8}{4-4a+a^{2}-a^{3}}
Do the multiplications in -2a^{2}+4a-8-\left(2-a\right)\left(a-2\right).
\frac{-a^{2}-4}{\left(a-2\right)\left(a^{2}+2a+4\right)}\times \frac{a^{3}+4a^{2}+8a+8}{4-4a+a^{2}-a^{3}}
Combine like terms in -2a^{2}+4a-8-2a+4+a^{2}-2a.
\frac{\left(-a^{2}-4\right)\left(a^{3}+4a^{2}+8a+8\right)}{\left(a-2\right)\left(a^{2}+2a+4\right)\left(4-4a+a^{2}-a^{3}\right)}
Multiply \frac{-a^{2}-4}{\left(a-2\right)\left(a^{2}+2a+4\right)} times \frac{a^{3}+4a^{2}+8a+8}{4-4a+a^{2}-a^{3}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a+2\right)\left(-a^{2}-4\right)\left(a^{2}+2a+4\right)}{\left(a-2\right)\left(-a+1\right)\left(a^{2}+4\right)\left(a^{2}+2a+4\right)}
Factor the expressions that are not already factored.
\frac{-\left(a+2\right)\left(a^{2}+4\right)\left(a^{2}+2a+4\right)}{\left(a-2\right)\left(-a+1\right)\left(a^{2}+4\right)\left(a^{2}+2a+4\right)}
Extract the negative sign in -a^{2}-4.
\frac{-\left(a+2\right)}{\left(a-2\right)\left(-a+1\right)}
Cancel out \left(a^{2}+4\right)\left(a^{2}+2a+4\right) in both numerator and denominator.
\frac{-a-2}{-a^{2}+3a-2}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}