Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{2}a\times \frac{2}{3}a+\frac{1}{2}a\times \frac{3}{4}b-\frac{2}{3}b\times \frac{2}{3}a-\frac{2}{3}b\times \frac{3}{4}b
Apply the distributive property by multiplying each term of \frac{1}{2}a-\frac{2}{3}b by each term of \frac{2}{3}a+\frac{3}{4}b.
\frac{1}{2}a^{2}\times \frac{2}{3}+\frac{1}{2}a\times \frac{3}{4}b-\frac{2}{3}b\times \frac{2}{3}a-\frac{2}{3}b\times \frac{3}{4}b
Multiply a and a to get a^{2}.
\frac{1}{2}a^{2}\times \frac{2}{3}+\frac{1}{2}a\times \frac{3}{4}b-\frac{2}{3}b\times \frac{2}{3}a-\frac{2}{3}b^{2}\times \frac{3}{4}
Multiply b and b to get b^{2}.
\frac{1\times 2}{2\times 3}a^{2}+\frac{1}{2}a\times \frac{3}{4}b-\frac{2}{3}b\times \frac{2}{3}a-\frac{2}{3}b^{2}\times \frac{3}{4}
Multiply \frac{1}{2} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}a^{2}+\frac{1}{2}a\times \frac{3}{4}b-\frac{2}{3}b\times \frac{2}{3}a-\frac{2}{3}b^{2}\times \frac{3}{4}
Cancel out 2 in both numerator and denominator.
\frac{1}{3}a^{2}+\frac{1\times 3}{2\times 4}ab-\frac{2}{3}b\times \frac{2}{3}a-\frac{2}{3}b^{2}\times \frac{3}{4}
Multiply \frac{1}{2} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}a^{2}+\frac{3}{8}ab-\frac{2}{3}b\times \frac{2}{3}a-\frac{2}{3}b^{2}\times \frac{3}{4}
Do the multiplications in the fraction \frac{1\times 3}{2\times 4}.
\frac{1}{3}a^{2}+\frac{3}{8}ab+\frac{-2\times 2}{3\times 3}ba-\frac{2}{3}b^{2}\times \frac{3}{4}
Multiply -\frac{2}{3} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}a^{2}+\frac{3}{8}ab+\frac{-4}{9}ba-\frac{2}{3}b^{2}\times \frac{3}{4}
Do the multiplications in the fraction \frac{-2\times 2}{3\times 3}.
\frac{1}{3}a^{2}+\frac{3}{8}ab-\frac{4}{9}ba-\frac{2}{3}b^{2}\times \frac{3}{4}
Fraction \frac{-4}{9} can be rewritten as -\frac{4}{9} by extracting the negative sign.
\frac{1}{3}a^{2}-\frac{5}{72}ab-\frac{2}{3}b^{2}\times \frac{3}{4}
Combine \frac{3}{8}ab and -\frac{4}{9}ba to get -\frac{5}{72}ab.
\frac{1}{3}a^{2}-\frac{5}{72}ab+\frac{-2\times 3}{3\times 4}b^{2}
Multiply -\frac{2}{3} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}a^{2}-\frac{5}{72}ab+\frac{-2}{4}b^{2}
Cancel out 3 in both numerator and denominator.
\frac{1}{3}a^{2}-\frac{5}{72}ab-\frac{1}{2}b^{2}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{2}a\times \frac{2}{3}a+\frac{1}{2}a\times \frac{3}{4}b-\frac{2}{3}b\times \frac{2}{3}a-\frac{2}{3}b\times \frac{3}{4}b
Apply the distributive property by multiplying each term of \frac{1}{2}a-\frac{2}{3}b by each term of \frac{2}{3}a+\frac{3}{4}b.
\frac{1}{2}a^{2}\times \frac{2}{3}+\frac{1}{2}a\times \frac{3}{4}b-\frac{2}{3}b\times \frac{2}{3}a-\frac{2}{3}b\times \frac{3}{4}b
Multiply a and a to get a^{2}.
\frac{1}{2}a^{2}\times \frac{2}{3}+\frac{1}{2}a\times \frac{3}{4}b-\frac{2}{3}b\times \frac{2}{3}a-\frac{2}{3}b^{2}\times \frac{3}{4}
Multiply b and b to get b^{2}.
\frac{1\times 2}{2\times 3}a^{2}+\frac{1}{2}a\times \frac{3}{4}b-\frac{2}{3}b\times \frac{2}{3}a-\frac{2}{3}b^{2}\times \frac{3}{4}
Multiply \frac{1}{2} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}a^{2}+\frac{1}{2}a\times \frac{3}{4}b-\frac{2}{3}b\times \frac{2}{3}a-\frac{2}{3}b^{2}\times \frac{3}{4}
Cancel out 2 in both numerator and denominator.
\frac{1}{3}a^{2}+\frac{1\times 3}{2\times 4}ab-\frac{2}{3}b\times \frac{2}{3}a-\frac{2}{3}b^{2}\times \frac{3}{4}
Multiply \frac{1}{2} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}a^{2}+\frac{3}{8}ab-\frac{2}{3}b\times \frac{2}{3}a-\frac{2}{3}b^{2}\times \frac{3}{4}
Do the multiplications in the fraction \frac{1\times 3}{2\times 4}.
\frac{1}{3}a^{2}+\frac{3}{8}ab+\frac{-2\times 2}{3\times 3}ba-\frac{2}{3}b^{2}\times \frac{3}{4}
Multiply -\frac{2}{3} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}a^{2}+\frac{3}{8}ab+\frac{-4}{9}ba-\frac{2}{3}b^{2}\times \frac{3}{4}
Do the multiplications in the fraction \frac{-2\times 2}{3\times 3}.
\frac{1}{3}a^{2}+\frac{3}{8}ab-\frac{4}{9}ba-\frac{2}{3}b^{2}\times \frac{3}{4}
Fraction \frac{-4}{9} can be rewritten as -\frac{4}{9} by extracting the negative sign.
\frac{1}{3}a^{2}-\frac{5}{72}ab-\frac{2}{3}b^{2}\times \frac{3}{4}
Combine \frac{3}{8}ab and -\frac{4}{9}ba to get -\frac{5}{72}ab.
\frac{1}{3}a^{2}-\frac{5}{72}ab+\frac{-2\times 3}{3\times 4}b^{2}
Multiply -\frac{2}{3} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}a^{2}-\frac{5}{72}ab+\frac{-2}{4}b^{2}
Cancel out 3 in both numerator and denominator.
\frac{1}{3}a^{2}-\frac{5}{72}ab-\frac{1}{2}b^{2}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.