Evaluate
\frac{11}{108}\approx 0.101851852
Factor
\frac{11}{2 ^ {2} \cdot 3 ^ {3}} = 0.10185185185185185
Share
Copied to clipboard
\frac{\left(\frac{1}{2}+\frac{7+3}{7}+\frac{5}{6}\right)\left(\frac{4}{15}-\frac{3}{20}\right)}{\frac{1\times 15+14}{15}}\times \frac{11}{18}
Multiply 1 and 7 to get 7.
\frac{\left(\frac{1}{2}+\frac{10}{7}+\frac{5}{6}\right)\left(\frac{4}{15}-\frac{3}{20}\right)}{\frac{1\times 15+14}{15}}\times \frac{11}{18}
Add 7 and 3 to get 10.
\frac{\left(\frac{7}{14}+\frac{20}{14}+\frac{5}{6}\right)\left(\frac{4}{15}-\frac{3}{20}\right)}{\frac{1\times 15+14}{15}}\times \frac{11}{18}
Least common multiple of 2 and 7 is 14. Convert \frac{1}{2} and \frac{10}{7} to fractions with denominator 14.
\frac{\left(\frac{7+20}{14}+\frac{5}{6}\right)\left(\frac{4}{15}-\frac{3}{20}\right)}{\frac{1\times 15+14}{15}}\times \frac{11}{18}
Since \frac{7}{14} and \frac{20}{14} have the same denominator, add them by adding their numerators.
\frac{\left(\frac{27}{14}+\frac{5}{6}\right)\left(\frac{4}{15}-\frac{3}{20}\right)}{\frac{1\times 15+14}{15}}\times \frac{11}{18}
Add 7 and 20 to get 27.
\frac{\left(\frac{81}{42}+\frac{35}{42}\right)\left(\frac{4}{15}-\frac{3}{20}\right)}{\frac{1\times 15+14}{15}}\times \frac{11}{18}
Least common multiple of 14 and 6 is 42. Convert \frac{27}{14} and \frac{5}{6} to fractions with denominator 42.
\frac{\frac{81+35}{42}\left(\frac{4}{15}-\frac{3}{20}\right)}{\frac{1\times 15+14}{15}}\times \frac{11}{18}
Since \frac{81}{42} and \frac{35}{42} have the same denominator, add them by adding their numerators.
\frac{\frac{116}{42}\left(\frac{4}{15}-\frac{3}{20}\right)}{\frac{1\times 15+14}{15}}\times \frac{11}{18}
Add 81 and 35 to get 116.
\frac{\frac{58}{21}\left(\frac{4}{15}-\frac{3}{20}\right)}{\frac{1\times 15+14}{15}}\times \frac{11}{18}
Reduce the fraction \frac{116}{42} to lowest terms by extracting and canceling out 2.
\frac{\frac{58}{21}\left(\frac{16}{60}-\frac{9}{60}\right)}{\frac{1\times 15+14}{15}}\times \frac{11}{18}
Least common multiple of 15 and 20 is 60. Convert \frac{4}{15} and \frac{3}{20} to fractions with denominator 60.
\frac{\frac{58}{21}\times \frac{16-9}{60}}{\frac{1\times 15+14}{15}}\times \frac{11}{18}
Since \frac{16}{60} and \frac{9}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{58}{21}\times \frac{7}{60}}{\frac{1\times 15+14}{15}}\times \frac{11}{18}
Subtract 9 from 16 to get 7.
\frac{\frac{58\times 7}{21\times 60}}{\frac{1\times 15+14}{15}}\times \frac{11}{18}
Multiply \frac{58}{21} times \frac{7}{60} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{406}{1260}}{\frac{1\times 15+14}{15}}\times \frac{11}{18}
Do the multiplications in the fraction \frac{58\times 7}{21\times 60}.
\frac{\frac{29}{90}}{\frac{1\times 15+14}{15}}\times \frac{11}{18}
Reduce the fraction \frac{406}{1260} to lowest terms by extracting and canceling out 14.
\frac{\frac{29}{90}}{\frac{15+14}{15}}\times \frac{11}{18}
Multiply 1 and 15 to get 15.
\frac{\frac{29}{90}}{\frac{29}{15}}\times \frac{11}{18}
Add 15 and 14 to get 29.
\frac{29}{90}\times \frac{15}{29}\times \frac{11}{18}
Divide \frac{29}{90} by \frac{29}{15} by multiplying \frac{29}{90} by the reciprocal of \frac{29}{15}.
\frac{29\times 15}{90\times 29}\times \frac{11}{18}
Multiply \frac{29}{90} times \frac{15}{29} by multiplying numerator times numerator and denominator times denominator.
\frac{15}{90}\times \frac{11}{18}
Cancel out 29 in both numerator and denominator.
\frac{1}{6}\times \frac{11}{18}
Reduce the fraction \frac{15}{90} to lowest terms by extracting and canceling out 15.
\frac{1\times 11}{6\times 18}
Multiply \frac{1}{6} times \frac{11}{18} by multiplying numerator times numerator and denominator times denominator.
\frac{11}{108}
Do the multiplications in the fraction \frac{1\times 11}{6\times 18}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}