Evaluate
\frac{59}{24}\approx 2.458333333
Factor
\frac{59}{2 ^ {3} \cdot 3} = 2\frac{11}{24} = 2.4583333333333335
Share
Copied to clipboard
\left(\frac{3}{6}+\frac{4}{6}\right)\times \frac{1\times 4+5}{4}-\frac{1}{6}
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{2}{3} to fractions with denominator 6.
\frac{3+4}{6}\times \frac{1\times 4+5}{4}-\frac{1}{6}
Since \frac{3}{6} and \frac{4}{6} have the same denominator, add them by adding their numerators.
\frac{7}{6}\times \frac{1\times 4+5}{4}-\frac{1}{6}
Add 3 and 4 to get 7.
\frac{7}{6}\times \frac{4+5}{4}-\frac{1}{6}
Multiply 1 and 4 to get 4.
\frac{7}{6}\times \frac{9}{4}-\frac{1}{6}
Add 4 and 5 to get 9.
\frac{7\times 9}{6\times 4}-\frac{1}{6}
Multiply \frac{7}{6} times \frac{9}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{63}{24}-\frac{1}{6}
Do the multiplications in the fraction \frac{7\times 9}{6\times 4}.
\frac{21}{8}-\frac{1}{6}
Reduce the fraction \frac{63}{24} to lowest terms by extracting and canceling out 3.
\frac{63}{24}-\frac{4}{24}
Least common multiple of 8 and 6 is 24. Convert \frac{21}{8} and \frac{1}{6} to fractions with denominator 24.
\frac{63-4}{24}
Since \frac{63}{24} and \frac{4}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{59}{24}
Subtract 4 from 63 to get 59.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}