Evaluate
\frac{1}{21}\approx 0.047619048
Factor
\frac{1}{3 \cdot 7} = 0.047619047619047616
Share
Copied to clipboard
\left(\frac{3}{42}+\frac{14}{42}\right)\times \frac{2}{17}
Least common multiple of 14 and 3 is 42. Convert \frac{1}{14} and \frac{1}{3} to fractions with denominator 42.
\frac{3+14}{42}\times \frac{2}{17}
Since \frac{3}{42} and \frac{14}{42} have the same denominator, add them by adding their numerators.
\frac{17}{42}\times \frac{2}{17}
Add 3 and 14 to get 17.
\frac{17\times 2}{42\times 17}
Multiply \frac{17}{42} times \frac{2}{17} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{42}
Cancel out 17 in both numerator and denominator.
\frac{1}{21}
Reduce the fraction \frac{2}{42} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}