Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{x^{2}}{y}-y^{1}\right)\times \frac{3}{x+y}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 1 from 2 to get 1.
\left(\frac{x^{2}}{y}-y\right)\times \frac{3}{x+y}
Calculate y to the power of 1 and get y.
\frac{x^{2}}{y}\times \frac{3}{x+y}+\left(-y\right)\times \frac{3}{x+y}
Use the distributive property to multiply \frac{x^{2}}{y}-y by \frac{3}{x+y}.
\frac{x^{2}\times 3}{y\left(x+y\right)}+\left(-y\right)\times \frac{3}{x+y}
Multiply \frac{x^{2}}{y} times \frac{3}{x+y} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}\times 3}{y\left(x+y\right)}+\frac{-y\times 3}{x+y}
Express \left(-y\right)\times \frac{3}{x+y} as a single fraction.
\frac{x^{2}\times 3}{y\left(x+y\right)}+\frac{-y\times 3y}{y\left(x+y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y\left(x+y\right) and x+y is y\left(x+y\right). Multiply \frac{-y\times 3}{x+y} times \frac{y}{y}.
\frac{x^{2}\times 3-y\times 3y}{y\left(x+y\right)}
Since \frac{x^{2}\times 3}{y\left(x+y\right)} and \frac{-y\times 3y}{y\left(x+y\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}\times 3-3y^{2}}{y\left(x+y\right)}
Do the multiplications in x^{2}\times 3-y\times 3y.
\frac{3\left(x+y\right)\left(x-y\right)}{y\left(x+y\right)}
Factor the expressions that are not already factored in \frac{x^{2}\times 3-3y^{2}}{y\left(x+y\right)}.
\frac{3\left(x-y\right)}{y}
Cancel out x+y in both numerator and denominator.
\frac{3x-3y}{y}
Use the distributive property to multiply 3 by x-y.
\left(\frac{x^{2}}{y}-y^{1}\right)\times \frac{3}{x+y}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 1 from 2 to get 1.
\left(\frac{x^{2}}{y}-y\right)\times \frac{3}{x+y}
Calculate y to the power of 1 and get y.
\frac{x^{2}}{y}\times \frac{3}{x+y}+\left(-y\right)\times \frac{3}{x+y}
Use the distributive property to multiply \frac{x^{2}}{y}-y by \frac{3}{x+y}.
\frac{x^{2}\times 3}{y\left(x+y\right)}+\left(-y\right)\times \frac{3}{x+y}
Multiply \frac{x^{2}}{y} times \frac{3}{x+y} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}\times 3}{y\left(x+y\right)}+\frac{-y\times 3}{x+y}
Express \left(-y\right)\times \frac{3}{x+y} as a single fraction.
\frac{x^{2}\times 3}{y\left(x+y\right)}+\frac{-y\times 3y}{y\left(x+y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y\left(x+y\right) and x+y is y\left(x+y\right). Multiply \frac{-y\times 3}{x+y} times \frac{y}{y}.
\frac{x^{2}\times 3-y\times 3y}{y\left(x+y\right)}
Since \frac{x^{2}\times 3}{y\left(x+y\right)} and \frac{-y\times 3y}{y\left(x+y\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}\times 3-3y^{2}}{y\left(x+y\right)}
Do the multiplications in x^{2}\times 3-y\times 3y.
\frac{3\left(x+y\right)\left(x-y\right)}{y\left(x+y\right)}
Factor the expressions that are not already factored in \frac{x^{2}\times 3-3y^{2}}{y\left(x+y\right)}.
\frac{3\left(x-y\right)}{y}
Cancel out x+y in both numerator and denominator.
\frac{3x-3y}{y}
Use the distributive property to multiply 3 by x-y.