Evaluate
\frac{3x}{y}-3
Expand
\frac{3x}{y}-3
Share
Copied to clipboard
\left(\frac{x^{2}}{y}-y^{1}\right)\times \frac{3}{x+y}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 1 from 2 to get 1.
\left(\frac{x^{2}}{y}-y\right)\times \frac{3}{x+y}
Calculate y to the power of 1 and get y.
\frac{x^{2}}{y}\times \frac{3}{x+y}+\left(-y\right)\times \frac{3}{x+y}
Use the distributive property to multiply \frac{x^{2}}{y}-y by \frac{3}{x+y}.
\frac{x^{2}\times 3}{y\left(x+y\right)}+\left(-y\right)\times \frac{3}{x+y}
Multiply \frac{x^{2}}{y} times \frac{3}{x+y} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}\times 3}{y\left(x+y\right)}+\frac{-y\times 3}{x+y}
Express \left(-y\right)\times \frac{3}{x+y} as a single fraction.
\frac{x^{2}\times 3}{y\left(x+y\right)}+\frac{-y\times 3y}{y\left(x+y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y\left(x+y\right) and x+y is y\left(x+y\right). Multiply \frac{-y\times 3}{x+y} times \frac{y}{y}.
\frac{x^{2}\times 3-y\times 3y}{y\left(x+y\right)}
Since \frac{x^{2}\times 3}{y\left(x+y\right)} and \frac{-y\times 3y}{y\left(x+y\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}\times 3-3y^{2}}{y\left(x+y\right)}
Do the multiplications in x^{2}\times 3-y\times 3y.
\frac{3\left(x+y\right)\left(x-y\right)}{y\left(x+y\right)}
Factor the expressions that are not already factored in \frac{x^{2}\times 3-3y^{2}}{y\left(x+y\right)}.
\frac{3\left(x-y\right)}{y}
Cancel out x+y in both numerator and denominator.
\frac{3x-3y}{y}
Use the distributive property to multiply 3 by x-y.
\left(\frac{x^{2}}{y}-y^{1}\right)\times \frac{3}{x+y}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 1 from 2 to get 1.
\left(\frac{x^{2}}{y}-y\right)\times \frac{3}{x+y}
Calculate y to the power of 1 and get y.
\frac{x^{2}}{y}\times \frac{3}{x+y}+\left(-y\right)\times \frac{3}{x+y}
Use the distributive property to multiply \frac{x^{2}}{y}-y by \frac{3}{x+y}.
\frac{x^{2}\times 3}{y\left(x+y\right)}+\left(-y\right)\times \frac{3}{x+y}
Multiply \frac{x^{2}}{y} times \frac{3}{x+y} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}\times 3}{y\left(x+y\right)}+\frac{-y\times 3}{x+y}
Express \left(-y\right)\times \frac{3}{x+y} as a single fraction.
\frac{x^{2}\times 3}{y\left(x+y\right)}+\frac{-y\times 3y}{y\left(x+y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y\left(x+y\right) and x+y is y\left(x+y\right). Multiply \frac{-y\times 3}{x+y} times \frac{y}{y}.
\frac{x^{2}\times 3-y\times 3y}{y\left(x+y\right)}
Since \frac{x^{2}\times 3}{y\left(x+y\right)} and \frac{-y\times 3y}{y\left(x+y\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}\times 3-3y^{2}}{y\left(x+y\right)}
Do the multiplications in x^{2}\times 3-y\times 3y.
\frac{3\left(x+y\right)\left(x-y\right)}{y\left(x+y\right)}
Factor the expressions that are not already factored in \frac{x^{2}\times 3-3y^{2}}{y\left(x+y\right)}.
\frac{3\left(x-y\right)}{y}
Cancel out x+y in both numerator and denominator.
\frac{3x-3y}{y}
Use the distributive property to multiply 3 by x-y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}