Evaluate
3x^{4}-17x^{3}-x^{2}+7x+29
Expand
3x^{4}-17x^{3}-x^{2}+7x+29
Graph
Share
Copied to clipboard
\left(\frac{3x^{2}}{6}-3x+\frac{2}{6}\right)\left(6x^{2}-6\right)+x^{3}-11x+31
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{x^{2}}{2} times \frac{3}{3}. Multiply \frac{1}{3} times \frac{2}{2}.
\left(\frac{3x^{2}+2}{6}-3x\right)\left(6x^{2}-6\right)+x^{3}-11x+31
Since \frac{3x^{2}}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\left(\frac{3x^{2}+2}{6}+\frac{6\left(-3\right)x}{6}\right)\left(6x^{2}-6\right)+x^{3}-11x+31
To add or subtract expressions, expand them to make their denominators the same. Multiply -3x times \frac{6}{6}.
\frac{3x^{2}+2+6\left(-3\right)x}{6}\left(6x^{2}-6\right)+x^{3}-11x+31
Since \frac{3x^{2}+2}{6} and \frac{6\left(-3\right)x}{6} have the same denominator, add them by adding their numerators.
\frac{3x^{2}+2-18x}{6}\left(6x^{2}-6\right)+x^{3}-11x+31
Do the multiplications in 3x^{2}+2+6\left(-3\right)x.
\frac{\left(3x^{2}+2-18x\right)\left(6x^{2}-6\right)}{6}+x^{3}-11x+31
Express \frac{3x^{2}+2-18x}{6}\left(6x^{2}-6\right) as a single fraction.
\frac{\left(3x^{2}+2-18x\right)\left(6x^{2}-6\right)}{6}+\frac{6\left(x^{3}-11x+31\right)}{6}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{3}-11x+31 times \frac{6}{6}.
\frac{\left(3x^{2}+2-18x\right)\left(6x^{2}-6\right)+6\left(x^{3}-11x+31\right)}{6}
Since \frac{\left(3x^{2}+2-18x\right)\left(6x^{2}-6\right)}{6} and \frac{6\left(x^{3}-11x+31\right)}{6} have the same denominator, add them by adding their numerators.
\frac{18x^{4}-18x^{2}+12x^{2}-12-108x^{3}+108x+6x^{3}-66x+186}{6}
Do the multiplications in \left(3x^{2}+2-18x\right)\left(6x^{2}-6\right)+6\left(x^{3}-11x+31\right).
\frac{18x^{4}-6x^{2}+174-102x^{3}+42x}{6}
Combine like terms in 18x^{4}-18x^{2}+12x^{2}-12-108x^{3}+108x+6x^{3}-66x+186.
3x^{4}-x^{2}+29-17x^{3}+7x
Divide each term of 18x^{4}-6x^{2}+174-102x^{3}+42x by 6 to get 3x^{4}-x^{2}+29-17x^{3}+7x.
\left(\frac{3x^{2}}{6}-3x+\frac{2}{6}\right)\left(6x^{2}-6\right)+x^{3}-11x+31
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{x^{2}}{2} times \frac{3}{3}. Multiply \frac{1}{3} times \frac{2}{2}.
\left(\frac{3x^{2}+2}{6}-3x\right)\left(6x^{2}-6\right)+x^{3}-11x+31
Since \frac{3x^{2}}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\left(\frac{3x^{2}+2}{6}+\frac{6\left(-3\right)x}{6}\right)\left(6x^{2}-6\right)+x^{3}-11x+31
To add or subtract expressions, expand them to make their denominators the same. Multiply -3x times \frac{6}{6}.
\frac{3x^{2}+2+6\left(-3\right)x}{6}\left(6x^{2}-6\right)+x^{3}-11x+31
Since \frac{3x^{2}+2}{6} and \frac{6\left(-3\right)x}{6} have the same denominator, add them by adding their numerators.
\frac{3x^{2}+2-18x}{6}\left(6x^{2}-6\right)+x^{3}-11x+31
Do the multiplications in 3x^{2}+2+6\left(-3\right)x.
\frac{\left(3x^{2}+2-18x\right)\left(6x^{2}-6\right)}{6}+x^{3}-11x+31
Express \frac{3x^{2}+2-18x}{6}\left(6x^{2}-6\right) as a single fraction.
\frac{\left(3x^{2}+2-18x\right)\left(6x^{2}-6\right)}{6}+\frac{6\left(x^{3}-11x+31\right)}{6}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{3}-11x+31 times \frac{6}{6}.
\frac{\left(3x^{2}+2-18x\right)\left(6x^{2}-6\right)+6\left(x^{3}-11x+31\right)}{6}
Since \frac{\left(3x^{2}+2-18x\right)\left(6x^{2}-6\right)}{6} and \frac{6\left(x^{3}-11x+31\right)}{6} have the same denominator, add them by adding their numerators.
\frac{18x^{4}-18x^{2}+12x^{2}-12-108x^{3}+108x+6x^{3}-66x+186}{6}
Do the multiplications in \left(3x^{2}+2-18x\right)\left(6x^{2}-6\right)+6\left(x^{3}-11x+31\right).
\frac{18x^{4}-6x^{2}+174-102x^{3}+42x}{6}
Combine like terms in 18x^{4}-18x^{2}+12x^{2}-12-108x^{3}+108x+6x^{3}-66x+186.
3x^{4}-x^{2}+29-17x^{3}+7x
Divide each term of 18x^{4}-6x^{2}+174-102x^{3}+42x by 6 to get 3x^{4}-x^{2}+29-17x^{3}+7x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}