Evaluate
\frac{94}{45}\approx 2.088888889
Factor
\frac{2 \cdot 47}{3 ^ {2} \cdot 5} = 2\frac{4}{45} = 2.088888888888889
Share
Copied to clipboard
\frac{|9-1|}{\left(9+1\right)\times 9}+2
Express \frac{\frac{|9-1|}{9+1}}{9} as a single fraction.
\frac{|8|}{\left(9+1\right)\times 9}+2
Subtract 1 from 9 to get 8.
\frac{8}{\left(9+1\right)\times 9}+2
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of 8 is 8.
\frac{8}{10\times 9}+2
Add 9 and 1 to get 10.
\frac{8}{90}+2
Multiply 10 and 9 to get 90.
\frac{4}{45}+2
Reduce the fraction \frac{8}{90} to lowest terms by extracting and canceling out 2.
\frac{4}{45}+\frac{90}{45}
Convert 2 to fraction \frac{90}{45}.
\frac{4+90}{45}
Since \frac{4}{45} and \frac{90}{45} have the same denominator, add them by adding their numerators.
\frac{94}{45}
Add 4 and 90 to get 94.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}