\left| \begin{array} { r r r } { 4 } & { 0 } & { 0 } \\ { 3 } & { 9 } & { - 9 } \\ { 8 } & { 8 } & { - 4 } \end{array} \right|
Evaluate
144
Factor
2^{4}\times 3^{2}
Share
Copied to clipboard
det(\left(\begin{matrix}4&0&0\\3&9&-9\\8&8&-4\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}4&0&0&4&0\\3&9&-9&3&9\\8&8&-4&8&8\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
4\times 9\left(-4\right)=-144
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
8\left(-9\right)\times 4=-288
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
-144-\left(-288\right)
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
144
Subtract -288 from -144.
det(\left(\begin{matrix}4&0&0\\3&9&-9\\8&8&-4\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
4det(\left(\begin{matrix}9&-9\\8&-4\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
4\left(9\left(-4\right)-8\left(-9\right)\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
4\times 36
Simplify.
144
Add the terms to obtain the final result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}