Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}1&2&-1\\2&-2&4\\-1&1&-2\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}1&2&-1&1&2\\2&-2&4&2&-2\\-1&1&-2&-1&1\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
-2\left(-2\right)+2\times 4\left(-1\right)-2=-6
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
-\left(-2\right)\left(-1\right)+4-2\times 2\times 2=-6
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
-6-\left(-6\right)
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
0
Subtract -6 from -6.
det(\left(\begin{matrix}1&2&-1\\2&-2&4\\-1&1&-2\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
det(\left(\begin{matrix}-2&4\\1&-2\end{matrix}\right))-2det(\left(\begin{matrix}2&4\\-1&-2\end{matrix}\right))-det(\left(\begin{matrix}2&-2\\-1&1\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
-2\left(-2\right)-4-2\left(2\left(-2\right)-\left(-4\right)\right)-\left(2-\left(-\left(-2\right)\right)\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
0
Simplify.