\left| \begin{array} { r r r } { \lambda } & { 2 } & { - 1 } \\ { 2 } & { \lambda } & { - 1 } \\ { - 1 } & { - 1 } & { \lambda } \end{array} \right|
Evaluate
\lambda ^{3}-6\lambda +4
Integrate w.r.t. λ
\frac{\lambda ^{4}}{4}-3\lambda ^{2}+4\lambda +С
Share
Copied to clipboard
det(\left(\begin{matrix}\lambda &2&-1\\2&\lambda &-1\\-1&-1&\lambda \end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}\lambda &2&-1&\lambda &2\\2&\lambda &-1&2&\lambda \\-1&-1&\lambda &-1&-1\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
\lambda \lambda \lambda +2\left(-1\right)\left(-1\right)-2\left(-1\right)=\lambda ^{3}+4
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
-\lambda \left(-1\right)-\left(-\lambda \right)+\lambda \times 2\times 2=6\lambda
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
\lambda ^{3}+4-6\lambda
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
\lambda ^{3}-6\lambda +4
Subtract 6\lambda from \lambda ^{3}+4.
det(\left(\begin{matrix}\lambda &2&-1\\2&\lambda &-1\\-1&-1&\lambda \end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
\lambda det(\left(\begin{matrix}\lambda &-1\\-1&\lambda \end{matrix}\right))-2det(\left(\begin{matrix}2&-1\\-1&\lambda \end{matrix}\right))-det(\left(\begin{matrix}2&\lambda \\-1&-1\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
\lambda \left(\lambda \lambda -\left(-\left(-1\right)\right)\right)-2\left(2\lambda -\left(-\left(-1\right)\right)\right)-\left(2\left(-1\right)-\left(-\lambda \right)\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
\lambda \left(\lambda ^{2}-1\right)-2\left(2\lambda -1\right)-\left(\lambda -2\right)
Simplify.
\lambda ^{3}-6\lambda +4
Add the terms to obtain the final result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}