\left| \begin{array} { r r } { \frac { 1 } { 5 } } & { - \frac { 1 } { 4 } } \\ { - \frac { 1 } { 3 } } & { \frac { 1 } { 3 } } \end{array} \right|
Evaluate
-\frac{1}{60}\approx -0.016666667
Factor
-\frac{1}{60} = -0.016666666666666666
Share
Copied to clipboard
det(\left(\begin{matrix}\frac{1}{5}&-\frac{1}{4}\\-\frac{1}{3}&\frac{1}{3}\end{matrix}\right))
Find the determinant of the matrix.
\frac{1}{5}\times \frac{1}{3}-\left(-\frac{1}{4}\left(-\frac{1}{3}\right)\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
\frac{1}{15}-\left(-\frac{1}{4}\left(-\frac{1}{3}\right)\right)
Multiply \frac{1}{5} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
\frac{1}{15}-\frac{1}{12}
Multiply -\frac{1}{4} times -\frac{1}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-\frac{1}{60}
Subtract \frac{1}{12} from \frac{1}{15} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}