\left| \begin{array} { l l l } { i } & { j } & { k } \\ { p } & { q } & { r } \\ { x } & { y } & { 2 } \end{array} \right|
Evaluate
jrx-kqx+kpy-iry-2jp+2iq
Share
Copied to clipboard
det(\left(\begin{matrix}i&j&k\\p&q&r\\x&y&2\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}i&j&k&i&j\\p&q&r&p&q\\x&y&2&x&y\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
iq\times 2+jrx+kpy=jrx+kpy+2iq
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
xqk+yri+2pj=kqx+iry+2jp
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
jrx+kpy+2iq-\left(kqx+iry+2jp\right)
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
jrx-kqx+kpy-iry-2jp+2iq
Subtract xqk+iyr+2pj from 2iq+jrx+kpy.
det(\left(\begin{matrix}i&j&k\\p&q&r\\x&y&2\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
idet(\left(\begin{matrix}q&r\\y&2\end{matrix}\right))-jdet(\left(\begin{matrix}p&r\\x&2\end{matrix}\right))+kdet(\left(\begin{matrix}p&q\\x&y\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
i\left(q\times 2-yr\right)-j\left(p\times 2-xr\right)+k\left(py-xq\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
i\left(2q-ry\right)-j\left(2p-rx\right)+k\left(py-qx\right)
Simplify.
jrx-kqx+kpy-iry-2jp+2iq
Add the terms to obtain the final result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}