\left| \begin{array} { l l l } { b } & { c } & { Q } \\ { b } & { 0 } & { c } \\ { 0 } & { b } & { a } \end{array} \right|
Evaluate
b\left(Qb-ac-bc\right)
Integrate w.r.t. Q
\frac{\left(Qb\right)^{2}}{2}-Qabc-Qcb^{2}+С
Share
Copied to clipboard
det(\left(\begin{matrix}b&c&Q\\b&0&c\\0&b&a\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}b&c&Q&b&c\\b&0&c&b&0\\0&b&a&0&b\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
Qbb=Qb^{2}
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
bcb+abc=bc\left(a+b\right)
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
Qb^{2}-bc\left(a+b\right)
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
b\left(-c\left(a+b\right)+Qb\right)
Subtract bc\left(b+a\right) from Qb^{2}.
det(\left(\begin{matrix}b&c&Q\\b&0&c\\0&b&a\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
bdet(\left(\begin{matrix}0&c\\b&a\end{matrix}\right))-cdet(\left(\begin{matrix}b&c\\0&a\end{matrix}\right))+Qdet(\left(\begin{matrix}b&0\\0&b\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
b\left(-bc\right)-cba+Qbb
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
b\left(-bc\right)-cab+Qb^{2}
Simplify.
b\left(Qb-ac-bc\right)
Add the terms to obtain the final result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}