Skip to main content
Evaluate
Tick mark Image
Integrate w.r.t. b
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}a&1&1\\1&b&1\\1&2&b\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}a&1&1&a&1\\1&b&1&1&b\\1&2&b&1&2\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
abb+1+2=ab^{2}+3
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
b+2a+b=2a+2b
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
ab^{2}+3-\left(2a+2b\right)
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
ab^{2}-2a-2b+3
Subtract 2b+2a from ab^{2}+3.
det(\left(\begin{matrix}a&1&1\\1&b&1\\1&2&b\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
adet(\left(\begin{matrix}b&1\\2&b\end{matrix}\right))-det(\left(\begin{matrix}1&1\\1&b\end{matrix}\right))+det(\left(\begin{matrix}1&b\\1&2\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
a\left(bb-2\right)-\left(b-1\right)+2-b
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
a\left(b^{2}-2\right)-\left(b-1\right)+2-b
Simplify.
ab^{2}-2a-2b+3
Add the terms to obtain the final result.