Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}5&4&1\\0&9&7\\8&1&0\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}5&4&1&5&4\\0&9&7&0&9\\8&1&0&8&1\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
4\times 7\times 8=224
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
8\times 9+7\times 5=107
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
224-107
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
117
Subtract 107 from 224.
det(\left(\begin{matrix}5&4&1\\0&9&7\\8&1&0\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
5det(\left(\begin{matrix}9&7\\1&0\end{matrix}\right))-4det(\left(\begin{matrix}0&7\\8&0\end{matrix}\right))+det(\left(\begin{matrix}0&9\\8&1\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
5\left(-7\right)-4\left(-8\times 7\right)-8\times 9
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
5\left(-7\right)-4\left(-56\right)-72
Simplify.
117
Add the terms to obtain the final result.