Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}3&-1&18\\4&3&10\\-5&-2&-22\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}3&-1&18&3&-1\\4&3&10&4&3\\-5&-2&-22&-5&-2\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
3\times 3\left(-22\right)-10\left(-5\right)+18\times 4\left(-2\right)=-292
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
-5\times 3\times 18-2\times 10\times 3-22\times 4\left(-1\right)=-242
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
-292-\left(-242\right)
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
-50
Subtract -242 from -292.
det(\left(\begin{matrix}3&-1&18\\4&3&10\\-5&-2&-22\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
3det(\left(\begin{matrix}3&10\\-2&-22\end{matrix}\right))-\left(-det(\left(\begin{matrix}4&10\\-5&-22\end{matrix}\right))\right)+18det(\left(\begin{matrix}4&3\\-5&-2\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
3\left(3\left(-22\right)-\left(-2\times 10\right)\right)-\left(-\left(4\left(-22\right)-\left(-5\times 10\right)\right)\right)+18\left(4\left(-2\right)-\left(-5\times 3\right)\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
3\left(-46\right)-\left(-\left(-38\right)\right)+18\times 7
Simplify.
-50
Add the terms to obtain the final result.