\left| \begin{array} { l l l } { 2001 } & { 2002 } & { 2003 } \\ { 2004 } & { 2005 } & { 2006 } \\ { 2007 } & { 2008 } & { 2016 } \end{array} \right|
Evaluate
-21
Factor
-21
Share
Copied to clipboard
det(\left(\begin{matrix}2001&2002&2003\\2004&2005&2006\\2007&2008&2016\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}2001&2002&2003&2001&2002\\2004&2005&2006&2004&2005\\2007&2008&2016&2007&2008\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
2001\times 2005\times 2016+2002\times 2006\times 2007+2003\times 2004\times 2008=24208474260
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
2007\times 2005\times 2003+2008\times 2006\times 2001+2016\times 2004\times 2002=24208474281
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
24208474260-24208474281
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
-21
Subtract 24208474281 from 24208474260.
det(\left(\begin{matrix}2001&2002&2003\\2004&2005&2006\\2007&2008&2016\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
2001det(\left(\begin{matrix}2005&2006\\2008&2016\end{matrix}\right))-2002det(\left(\begin{matrix}2004&2006\\2007&2016\end{matrix}\right))+2003det(\left(\begin{matrix}2004&2005\\2007&2008\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
2001\left(2005\times 2016-2008\times 2006\right)-2002\left(2004\times 2016-2007\times 2006\right)+2003\left(2004\times 2008-2007\times 2005\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
2001\times 14032-2002\times 14022+2003\left(-3\right)
Simplify.
-21
Add the terms to obtain the final result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}