Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}2001&2002&2003\\2004&2005&2006\\2007&2008&2016\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}2001&2002&2003&2001&2002\\2004&2005&2006&2004&2005\\2007&2008&2016&2007&2008\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
2001\times 2005\times 2016+2002\times 2006\times 2007+2003\times 2004\times 2008=24208474260
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
2007\times 2005\times 2003+2008\times 2006\times 2001+2016\times 2004\times 2002=24208474281
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
24208474260-24208474281
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
-21
Subtract 24208474281 from 24208474260.
det(\left(\begin{matrix}2001&2002&2003\\2004&2005&2006\\2007&2008&2016\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
2001det(\left(\begin{matrix}2005&2006\\2008&2016\end{matrix}\right))-2002det(\left(\begin{matrix}2004&2006\\2007&2016\end{matrix}\right))+2003det(\left(\begin{matrix}2004&2005\\2007&2008\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
2001\left(2005\times 2016-2008\times 2006\right)-2002\left(2004\times 2016-2007\times 2006\right)+2003\left(2004\times 2008-2007\times 2005\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
2001\times 14032-2002\times 14022+2003\left(-3\right)
Simplify.
-21
Add the terms to obtain the final result.