\left| \begin{array} { l l l } { 11 } & { 21 } & { 31 } \\ { 21 } & { 31 } & { 4 } \\ { 31 } & { 41 } & { 51 } \end{array} \right|
Evaluate
-7400
Factor
-7400
Share
Copied to clipboard
det(\left(\begin{matrix}11&21&31\\21&31&4\\31&41&51\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}11&21&31&11&21\\21&31&4&21&31\\31&41&51&31&41\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
11\times 31\times 51+21\times 4\times 31+31\times 21\times 41=46686
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
31\times 31\times 31+41\times 4\times 11+51\times 21\times 21=54086
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
46686-54086
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
-7400
Subtract 54086 from 46686.
det(\left(\begin{matrix}11&21&31\\21&31&4\\31&41&51\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
11det(\left(\begin{matrix}31&4\\41&51\end{matrix}\right))-21det(\left(\begin{matrix}21&4\\31&51\end{matrix}\right))+31det(\left(\begin{matrix}21&31\\31&41\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
11\left(31\times 51-41\times 4\right)-21\left(21\times 51-31\times 4\right)+31\left(21\times 41-31\times 31\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
11\times 1417-21\times 947+31\left(-100\right)
Simplify.
-7400
Add the terms to obtain the final result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}