Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}103&1&204\\199&2&345\\301&3&600\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}103&1&204&103&1\\199&2&345&199&2\\301&3&600&301&3\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
103\times 2\times 600+345\times 301+204\times 199\times 3=349233
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
301\times 2\times 204+3\times 345\times 103+600\times 199=348813
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
349233-348813
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
420
Subtract 348813 from 349233.
det(\left(\begin{matrix}103&1&204\\199&2&345\\301&3&600\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
103det(\left(\begin{matrix}2&345\\3&600\end{matrix}\right))-det(\left(\begin{matrix}199&345\\301&600\end{matrix}\right))+204det(\left(\begin{matrix}199&2\\301&3\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
103\left(2\times 600-3\times 345\right)-\left(199\times 600-301\times 345\right)+204\left(199\times 3-301\times 2\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
103\times 165-15555+204\left(-5\right)
Simplify.
420
Add the terms to obtain the final result.